mirror of
https://github.com/gchq/CyberChef.git
synced 2025-04-24 00:36:16 -04:00
Additional linter corrections
This commit is contained in:
parent
0f16fa0ce1
commit
f61bdf06c6
4 changed files with 74 additions and 83 deletions
|
@ -19,8 +19,8 @@ export class SM2 {
|
|||
/**
|
||||
* Constructor for SM2 class; sets up with the curve and the output format as specified in user args
|
||||
*
|
||||
* @param {*} curve
|
||||
* @param {*} format
|
||||
* @param {*} curve
|
||||
* @param {*} format
|
||||
*/
|
||||
constructor(curve, format) {
|
||||
this.ecParams = null;
|
||||
|
@ -39,7 +39,7 @@ export class SM2 {
|
|||
"32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7", // gx
|
||||
"BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0", // gy
|
||||
[]
|
||||
) // alias
|
||||
); // alias
|
||||
this.ecParams = r.crypto.ECParameterDB.getByName(curve);
|
||||
|
||||
this.format = format;
|
||||
|
@ -79,15 +79,15 @@ export class SM2 {
|
|||
* @returns {string}
|
||||
*/
|
||||
encrypt(input) {
|
||||
const G = this.ecParams.G
|
||||
const G = this.ecParams.G;
|
||||
|
||||
/*
|
||||
* Compute a new, random public key along the same elliptic curve to form the starting point for our encryption process (record the resulting X and Y as hex to provide as part of the operation output)
|
||||
* k: Randomly generated BigInteger
|
||||
* c1: Result of dotting our curve generator point `G` with the value of `k`
|
||||
*/
|
||||
var k = this.generatePublicKey();
|
||||
var c1 = G.multiply(k);
|
||||
const k = this.generatePublicKey();
|
||||
const c1 = G.multiply(k);
|
||||
const [hexC1X, hexC1Y] = this.getPointAsHex(c1);
|
||||
|
||||
/*
|
||||
|
@ -98,21 +98,21 @@ export class SM2 {
|
|||
/*
|
||||
* Compute the C3 SM3 hash before we transform the array
|
||||
*/
|
||||
var c3 = this.c3(p2, input);
|
||||
const c3 = this.c3(p2, input);
|
||||
|
||||
/*
|
||||
* Genreate a proper length encryption key, XOR iteratively, and convert newly encrypted data to hex
|
||||
*/
|
||||
var key = this.kdf(p2, input.byteLength);
|
||||
const key = this.kdf(p2, input.byteLength);
|
||||
for (let i = 0; i < input.byteLength; i++) {
|
||||
input[i] ^= Utils.ord(key[i]);
|
||||
}
|
||||
var c2 = Buffer.from(input).toString('hex');
|
||||
const c2 = Buffer.from(input).toString("hex");
|
||||
|
||||
/*
|
||||
* Check user input specs; order the output components as selected
|
||||
*/
|
||||
if (this.format == "C1C3C2") {
|
||||
if (this.format === "C1C3C2") {
|
||||
return hexC1X + hexC1Y + c3 + c2;
|
||||
} else {
|
||||
return hexC1X + hexC1Y + c2 + c3;
|
||||
|
@ -124,37 +124,37 @@ export class SM2 {
|
|||
* @param {*} input
|
||||
*/
|
||||
decrypt(input) {
|
||||
var c1X = input.slice(0, 64);
|
||||
var c1Y = input.slice(64, 128);
|
||||
const c1X = input.slice(0, 64);
|
||||
const c1Y = input.slice(64, 128);
|
||||
|
||||
var c3 = ""
|
||||
var c2 = ""
|
||||
let c3 = "";
|
||||
let c2 = "";
|
||||
|
||||
if (this.format == "C1C3C2") {
|
||||
c3 = input.slice(128,192);
|
||||
if (this.format === "C1C3C2") {
|
||||
c3 = input.slice(128, 192);
|
||||
c2 = input.slice(192);
|
||||
} else {
|
||||
c2 = input.slice(128, -64);
|
||||
c3 = input.slice(-64);
|
||||
}
|
||||
c2 = Uint8Array.from(fromHex(c2))
|
||||
var c1 = this.ecParams.curve.decodePointHex("04" + c1X + c1Y);
|
||||
c2 = Uint8Array.from(fromHex(c2));
|
||||
const c1 = this.ecParams.curve.decodePointHex("04" + c1X + c1Y);
|
||||
|
||||
/*
|
||||
* Compute the p2 (secret) value by taking the C1 point provided in the encrypted package, and multiplying by the private k value
|
||||
*/
|
||||
var p2 = c1.multiply(this.privateKey);
|
||||
const p2 = c1.multiply(this.privateKey);
|
||||
|
||||
/*
|
||||
* Similar to encryption; compute sufficient length key material and XOR the input data to recover the original message
|
||||
*/
|
||||
var key = this.kdf(p2, c2.byteLength);
|
||||
const key = this.kdf(p2, c2.byteLength);
|
||||
|
||||
for (let i = 0; i < c2.byteLength; i++) {
|
||||
c2[i] ^= Utils.ord(key[i]);
|
||||
}
|
||||
|
||||
var check = this.c3(p2, c2);
|
||||
const check = this.c3(p2, c2);
|
||||
if (check === c3) {
|
||||
return c2.buffer;
|
||||
} else {
|
||||
|
@ -165,9 +165,9 @@ export class SM2 {
|
|||
|
||||
/**
|
||||
* Generates a large random number
|
||||
*
|
||||
* @param {*} limit
|
||||
* @returns
|
||||
*
|
||||
* @param {*} limit
|
||||
* @returns
|
||||
*/
|
||||
getBigRandom(limit) {
|
||||
return new r.BigInteger(limit.bitLength(), this.rng)
|
||||
|
@ -177,51 +177,51 @@ export class SM2 {
|
|||
|
||||
/**
|
||||
* Helper function for generating a large random K number; utilized for generating our initial C1 point
|
||||
* TODO: Do we need to do any sort of validation on the resulting k values?
|
||||
*
|
||||
* TODO: Do we need to do any sort of validation on the resulting k values?
|
||||
*
|
||||
* @returns {BigInteger}
|
||||
*/
|
||||
generatePublicKey() {
|
||||
const n = this.ecParams.n;
|
||||
var k = this.getBigRandom(n);
|
||||
const k = this.getBigRandom(n);
|
||||
return k;
|
||||
}
|
||||
|
||||
/**
|
||||
* SM2 Key Derivation Function (KDF); Takes P2 point, and generates a key material stream large enough to encrypt all of the input data
|
||||
*
|
||||
* @param {*} p2
|
||||
* @param {*} len
|
||||
*
|
||||
* @param {*} p2
|
||||
* @param {*} len
|
||||
* @returns {string}
|
||||
*/
|
||||
kdf(p2, len) {
|
||||
const [hX, hY] = this.getPointAsHex(p2);
|
||||
|
||||
var total = Math.ceil(len / 32) + 1;
|
||||
var cnt = 1;
|
||||
const total = Math.ceil(len / 32) + 1;
|
||||
let cnt = 1;
|
||||
|
||||
var keyMaterial = ""
|
||||
let keyMaterial = "";
|
||||
|
||||
while (cnt < total) {
|
||||
var num = Utils.intToByteArray(cnt, 4, "big");
|
||||
var overall = fromHex(hX).concat(fromHex(hY)).concat(num)
|
||||
const num = Utils.intToByteArray(cnt, 4, "big");
|
||||
const overall = fromHex(hX).concat(fromHex(hY)).concat(num);
|
||||
keyMaterial += this.sm3(overall);
|
||||
cnt++;
|
||||
}
|
||||
return keyMaterial
|
||||
return keyMaterial;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the C3 component of our final encrypted payload; which is the SM3 hash of the P2 point and the original, unencrypted input data
|
||||
*
|
||||
* @param {*} p2
|
||||
* @param {*} input
|
||||
* @returns {string}
|
||||
*
|
||||
* @param {*} p2
|
||||
* @param {*} input
|
||||
* @returns {string}
|
||||
*/
|
||||
c3(p2, input) {
|
||||
const [hX, hY] = this.getPointAsHex(p2);
|
||||
|
||||
var overall = fromHex(hX).concat(Array.from(input)).concat(fromHex(hY));
|
||||
const overall = fromHex(hX).concat(Array.from(input)).concat(fromHex(hY));
|
||||
|
||||
return toHex(this.sm3(overall));
|
||||
|
||||
|
@ -229,12 +229,12 @@ export class SM2 {
|
|||
|
||||
/**
|
||||
* SM3 setup helper function; takes input data as an array, processes the hash and returns the result
|
||||
*
|
||||
* @param {*} data
|
||||
*
|
||||
* @param {*} data
|
||||
* @returns {string}
|
||||
*/
|
||||
sm3(data) {
|
||||
var hashData = Utils.arrayBufferToStr(Uint8Array.from(data).buffer, false);
|
||||
const hashData = Utils.arrayBufferToStr(Uint8Array.from(data).buffer, false);
|
||||
const hasher = new Sm3();
|
||||
hasher.update(hashData);
|
||||
return hasher.finalize();
|
||||
|
@ -242,17 +242,17 @@ export class SM2 {
|
|||
|
||||
/**
|
||||
* Utility function, returns an elliptic curve points X and Y values as hex;
|
||||
*
|
||||
*
|
||||
* @param {EcPointFp} point
|
||||
* @returns {[]}
|
||||
*/
|
||||
getPointAsHex(point) {
|
||||
var biX = point.getX().toBigInteger();
|
||||
var biY = point.getY().toBigInteger();
|
||||
const biX = point.getX().toBigInteger();
|
||||
const biY = point.getY().toBigInteger();
|
||||
|
||||
var charlen = this.ecParams.keycharlen;
|
||||
var hX = ("0000000000" + biX.toString(16)).slice(- charlen);
|
||||
var hY = ("0000000000" + biY.toString(16)).slice(- charlen);
|
||||
return [hX, hY]
|
||||
const charlen = this.ecParams.keycharlen;
|
||||
const hX = ("0000000000" + biX.toString(16)).slice(- charlen);
|
||||
const hY = ("0000000000" + biY.toString(16)).slice(- charlen);
|
||||
return [hX, hY];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -5,7 +5,6 @@
|
|||
*/
|
||||
|
||||
import Operation from "../Operation.mjs";
|
||||
import OperationError from "../errors/OperationError.mjs";
|
||||
|
||||
import { SM2 } from "../lib/SM2.mjs";
|
||||
|
||||
|
@ -55,12 +54,11 @@ class SM2Decrypt extends Operation {
|
|||
run(input, args) {
|
||||
const [privateKey, inputFormat, curveName] = args;
|
||||
|
||||
var sm2 = new SM2(curveName, inputFormat);
|
||||
const sm2 = new SM2(curveName, inputFormat);
|
||||
sm2.setPrivateKey(privateKey);
|
||||
|
||||
|
||||
var result = sm2.decrypt(input);
|
||||
return result
|
||||
const result = sm2.decrypt(input);
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -5,16 +5,9 @@
|
|||
*/
|
||||
|
||||
import Operation from "../Operation.mjs";
|
||||
import OperationError from "../errors/OperationError.mjs";
|
||||
|
||||
import { SM2 } from "../lib/SM2.mjs";
|
||||
|
||||
import { fromHex } from "../lib/Hex.mjs";
|
||||
import Utils from "../Utils.mjs";
|
||||
import Sm3 from "crypto-api/src/hasher/sm3.mjs";
|
||||
import {toHex} from "crypto-api/src/encoder/hex.mjs";
|
||||
import r from "jsrsasign";
|
||||
|
||||
/**
|
||||
* SM2 Encrypt operation
|
||||
*/
|
||||
|
@ -68,11 +61,11 @@ class SM2Encrypt extends Operation {
|
|||
const [publicKeyX, publicKeyY, outputFormat, curveName] = args;
|
||||
this.outputFormat = outputFormat;
|
||||
|
||||
var sm2 = new SM2(curveName, outputFormat);
|
||||
const sm2 = new SM2(curveName, outputFormat);
|
||||
sm2.setPublicKey(publicKeyX, publicKeyY);
|
||||
|
||||
var result = sm2.encrypt(new Uint8Array(input))
|
||||
return result
|
||||
const result = sm2.encrypt(new Uint8Array(input));
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -85,11 +78,11 @@ class SM2Encrypt extends Operation {
|
|||
* @returns {Object[]} pos
|
||||
*/
|
||||
highlight(pos, args) {
|
||||
const [privateKeyX, privateKeyY, outputFormat, curveName] = args;
|
||||
var num = pos[0].end - pos[0].start
|
||||
var adjust = 128
|
||||
if (outputFormat == "C1C3C2") {
|
||||
adjust = 192
|
||||
const outputFormat = args[2];
|
||||
const num = pos[0].end - pos[0].start;
|
||||
let adjust = 128;
|
||||
if (outputFormat === "C1C3C2") {
|
||||
adjust = 192;
|
||||
}
|
||||
pos[0].start = Math.ceil(pos[0].start + adjust);
|
||||
pos[0].end = Math.floor(pos[0].end + adjust + num);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue