mirror of
https://github.com/gchq/CyberChef.git
synced 2025-04-24 08:46:19 -04:00
Bring up to date with master
This commit is contained in:
commit
f473807459
86 changed files with 10685 additions and 4298 deletions
756
src/core/lib/Bombe.mjs
Normal file
756
src/core/lib/Bombe.mjs
Normal file
|
@ -0,0 +1,756 @@
|
|||
/**
|
||||
* Emulation of the Bombe machine.
|
||||
*
|
||||
* @author s2224834
|
||||
* @author The National Museum of Computing - Bombe Rebuild Project
|
||||
* @copyright Crown Copyright 2019
|
||||
* @license Apache-2.0
|
||||
*/
|
||||
|
||||
import OperationError from "../errors/OperationError";
|
||||
import Utils from "../Utils";
|
||||
import {Rotor, Plugboard, a2i, i2a} from "./Enigma";
|
||||
|
||||
/**
|
||||
* Convenience/optimisation subclass of Rotor
|
||||
*
|
||||
* This allows creating multiple Rotors which share backing maps, to avoid repeatedly parsing the
|
||||
* rotor spec strings and duplicating the maps in memory.
|
||||
*/
|
||||
class CopyRotor extends Rotor {
|
||||
/**
|
||||
* Return a copy of this Rotor.
|
||||
* @returns {Object}
|
||||
*/
|
||||
copy() {
|
||||
const clone = {
|
||||
map: this.map,
|
||||
revMap: this.revMap,
|
||||
pos: this.pos,
|
||||
step: this.step,
|
||||
transform: this.transform,
|
||||
revTransform: this.revTransform,
|
||||
};
|
||||
return clone;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Node in the menu graph
|
||||
*
|
||||
* A node represents a cipher/plaintext letter.
|
||||
*/
|
||||
class Node {
|
||||
/**
|
||||
* Node constructor.
|
||||
* @param {number} letter - The plain/ciphertext letter this node represents (as a number).
|
||||
*/
|
||||
constructor(letter) {
|
||||
this.letter = letter;
|
||||
this.edges = new Set();
|
||||
this.visited = false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Edge in the menu graph
|
||||
*
|
||||
* An edge represents an Enigma machine transformation between two letters.
|
||||
*/
|
||||
class Edge {
|
||||
/**
|
||||
* Edge constructor - an Enigma machine mapping between letters
|
||||
* @param {number} pos - The rotor position, relative to the beginning of the crib, at this edge
|
||||
* @param {number} node1 - Letter at one end (as a number)
|
||||
* @param {number} node2 - Letter at the other end
|
||||
*/
|
||||
constructor(pos, node1, node2) {
|
||||
this.pos = pos;
|
||||
this.node1 = node1;
|
||||
this.node2 = node2;
|
||||
node1.edges.add(this);
|
||||
node2.edges.add(this);
|
||||
this.visited = false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given the node at one end of this edge, return the other end.
|
||||
* @param node {number} - The node we have
|
||||
* @returns {number}
|
||||
*/
|
||||
getOther(node) {
|
||||
return this.node1 === node ? this.node2 : this.node1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* As all the Bombe's rotors move in step, at any given point the vast majority of the scramblers
|
||||
* in the machine share the majority of their state, which is hosted in this class.
|
||||
*/
|
||||
class SharedScrambler {
|
||||
/**
|
||||
* SharedScrambler constructor.
|
||||
* @param {Object[]} rotors - List of rotors in the shared state _only_.
|
||||
* @param {Object} reflector - The reflector in use.
|
||||
*/
|
||||
constructor(rotors, reflector) {
|
||||
this.lowerCache = new Array(26);
|
||||
this.higherCache = new Array(26);
|
||||
for (let i=0; i<26; i++) {
|
||||
this.higherCache[i] = new Array(26);
|
||||
}
|
||||
this.changeRotors(rotors, reflector);
|
||||
}
|
||||
|
||||
/**
|
||||
* Replace the rotors and reflector in this SharedScrambler.
|
||||
* This takes care of flushing caches as well.
|
||||
* @param {Object[]} rotors - List of rotors in the shared state _only_.
|
||||
* @param {Object} reflector - The reflector in use.
|
||||
*/
|
||||
changeRotors(rotors, reflector) {
|
||||
this.reflector = reflector;
|
||||
this.rotors = rotors;
|
||||
this.rotorsRev = [].concat(rotors).reverse();
|
||||
this.cacheGen();
|
||||
}
|
||||
|
||||
/**
|
||||
* Step the rotors forward.
|
||||
* @param {number} n - How many rotors to step. This includes the rotors which are not part of
|
||||
* the shared state, so should be 2 or more.
|
||||
*/
|
||||
step(n) {
|
||||
for (let i=0; i<n-1; i++) {
|
||||
this.rotors[i].step();
|
||||
}
|
||||
this.cacheGen();
|
||||
}
|
||||
|
||||
/**
|
||||
* Optimisation: We pregenerate all routes through the machine with the top rotor removed,
|
||||
* as these rarely change. This saves a lot of lookups. This function generates this route
|
||||
* table.
|
||||
* We also just-in-time cache the full routes through the scramblers, because after stepping
|
||||
* the fast rotor some scramblers will be in states occupied by other scrambles on previous
|
||||
* iterations.
|
||||
*/
|
||||
cacheGen() {
|
||||
for (let i=0; i<26; i++) {
|
||||
this.lowerCache[i] = undefined;
|
||||
for (let j=0; j<26; j++) {
|
||||
this.higherCache[i][j] = undefined;
|
||||
}
|
||||
}
|
||||
for (let i=0; i<26; i++) {
|
||||
if (this.lowerCache[i] !== undefined) {
|
||||
continue;
|
||||
}
|
||||
let letter = i;
|
||||
for (const rotor of this.rotors) {
|
||||
letter = rotor.transform(letter);
|
||||
}
|
||||
letter = this.reflector.transform(letter);
|
||||
for (const rotor of this.rotorsRev) {
|
||||
letter = rotor.revTransform(letter);
|
||||
}
|
||||
// By symmetry
|
||||
this.lowerCache[i] = letter;
|
||||
this.lowerCache[letter] = i;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Map a letter through this (partial) scrambler.
|
||||
* @param {number} i - The letter
|
||||
* @returns {number}
|
||||
*/
|
||||
transform(i) {
|
||||
return this.lowerCache[i];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Scrambler.
|
||||
*
|
||||
* This is effectively just an Enigma machine, but it only operates on one character at a time and
|
||||
* the stepping mechanism is different.
|
||||
*/
|
||||
class Scrambler {
|
||||
/** Scrambler constructor.
|
||||
* @param {Object} base - The SharedScrambler whose state this scrambler uses
|
||||
* @param {Object} rotor - The non-shared fast rotor in this scrambler
|
||||
* @param {number} pos - Position offset from start of crib
|
||||
* @param {number} end1 - Letter in menu this scrambler is attached to
|
||||
* @param {number} end2 - Other letter in menu this scrambler is attached to
|
||||
*/
|
||||
constructor(base, rotor, pos, end1, end2) {
|
||||
this.baseScrambler = base;
|
||||
this.initialPos = pos;
|
||||
this.changeRotor(rotor);
|
||||
this.end1 = end1;
|
||||
this.end2 = end2;
|
||||
// For efficiency reasons, we pull the relevant shared cache from the baseScrambler into
|
||||
// this object - this saves us a few pointer dereferences
|
||||
this.cache = this.baseScrambler.higherCache[pos];
|
||||
}
|
||||
|
||||
/**
|
||||
* Replace the rotor in this scrambler.
|
||||
* The position is reset automatically.
|
||||
* @param {Object} rotor - New rotor
|
||||
*/
|
||||
changeRotor(rotor) {
|
||||
this.rotor = rotor;
|
||||
this.rotor.pos += this.initialPos;
|
||||
}
|
||||
|
||||
/**
|
||||
* Step the rotor forward.
|
||||
*
|
||||
* The base SharedScrambler needs to be instructed to step separately.
|
||||
*/
|
||||
step() {
|
||||
// The Bombe steps the slowest rotor on an actual Enigma fastest, for reasons.
|
||||
// ...but for optimisation reasons I'm going to cheat and not do that, as this vastly
|
||||
// simplifies caching the state of the majority of the scramblers. The results are the
|
||||
// same, just in a slightly different order.
|
||||
this.rotor.step();
|
||||
this.cache = this.baseScrambler.higherCache[this.rotor.pos];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Run a letter through the scrambler.
|
||||
* @param {number} i - The letter to transform (as a number)
|
||||
* @returns {number}
|
||||
*/
|
||||
transform(i) {
|
||||
let letter = i;
|
||||
const cached = this.cache[i];
|
||||
if (cached !== undefined) {
|
||||
return cached;
|
||||
}
|
||||
letter = this.rotor.transform(letter);
|
||||
letter = this.baseScrambler.transform(letter);
|
||||
letter = this.rotor.revTransform(letter);
|
||||
this.cache[i] = letter;
|
||||
this.cache[letter] = i;
|
||||
return letter;
|
||||
}
|
||||
|
||||
/**
|
||||
* Given one letter in the menu this scrambler maps to, return the other.
|
||||
* @param end {number} - The node we have
|
||||
* @returns {number}
|
||||
*/
|
||||
getOtherEnd(end) {
|
||||
return this.end1 === end ? this.end2 : this.end1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Read the position this scrambler is set to.
|
||||
* Note that because of Enigma's stepping, you need to set an actual Enigma to the previous
|
||||
* position in order to get it to make a certain set of electrical connections when a button
|
||||
* is pressed - this function *does* take this into account.
|
||||
* However, as with the rest of the Bombe, it does not take stepping into account - the middle
|
||||
* and slow rotors are treated as static.
|
||||
* @return {string}
|
||||
*/
|
||||
getPos() {
|
||||
let result = "";
|
||||
// Roll back the fast rotor by one step
|
||||
let pos = Utils.mod(this.rotor.pos - 1, 26);
|
||||
result += i2a(pos);
|
||||
for (let i=0; i<this.baseScrambler.rotors.length; i++) {
|
||||
pos = this.baseScrambler.rotors[i].pos;
|
||||
result += i2a(pos);
|
||||
}
|
||||
return result.split("").reverse().join("");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Bombe simulator class.
|
||||
*/
|
||||
export class BombeMachine {
|
||||
/**
|
||||
* Construct a Bombe.
|
||||
*
|
||||
* Note that there is no handling of offsets here: the crib specified must exactly match the
|
||||
* ciphertext. It will check that the crib is sane (length is vaguely sensible and there's no
|
||||
* matching characters between crib and ciphertext) but cannot check further - if it's wrong
|
||||
* your results will be wrong!
|
||||
*
|
||||
* There is also no handling of rotor stepping - if the target Enigma stepped in the middle of
|
||||
* your crib, you're out of luck. TODO: Allow specifying a step point - this is fairly easy to
|
||||
* configure on a real Bombe, but we're not clear on whether it was ever actually done for
|
||||
* real (there would almost certainly have been better ways of attacking in most situations
|
||||
* than attempting to exhaust options for the stepping point, but in some circumstances, e.g.
|
||||
* via Banburismus, the stepping point might have been known).
|
||||
*
|
||||
* @param {string[]} rotors - list of rotor spec strings (without step points!)
|
||||
* @param {Object} reflector - Reflector object
|
||||
* @param {string} ciphertext - The ciphertext to attack
|
||||
* @param {string} crib - Known plaintext for this ciphertext
|
||||
* @param {boolean} check - Whether to use the checking machine
|
||||
* @param {function} update - Function to call to send status updates (optional)
|
||||
*/
|
||||
constructor(rotors, reflector, ciphertext, crib, check, update=undefined) {
|
||||
if (ciphertext.length < crib.length) {
|
||||
throw new OperationError("Crib overruns supplied ciphertext");
|
||||
}
|
||||
if (crib.length < 2) {
|
||||
// This is the absolute bare minimum to be sane, and even then it's likely too short to
|
||||
// be useful
|
||||
throw new OperationError("Crib is too short");
|
||||
}
|
||||
if (crib.length > 25) {
|
||||
// A crib longer than this will definitely cause the middle rotor to step somewhere
|
||||
// A shorter crib is preferable to reduce this chance, of course
|
||||
throw new OperationError("Crib is too long");
|
||||
}
|
||||
for (let i=0; i<crib.length; i++) {
|
||||
if (ciphertext[i] === crib[i]) {
|
||||
throw new OperationError(`Invalid crib: character ${ciphertext[i]} at pos ${i} in both ciphertext and crib`);
|
||||
}
|
||||
}
|
||||
this.ciphertext = ciphertext;
|
||||
this.crib = crib;
|
||||
this.initRotors(rotors);
|
||||
this.check = check;
|
||||
this.updateFn = update;
|
||||
|
||||
const [mostConnected, edges] = this.makeMenu();
|
||||
|
||||
// This is the bundle of wires corresponding to the 26 letters within each of the 26
|
||||
// possible nodes in the menu
|
||||
this.wires = new Array(26*26);
|
||||
|
||||
// These are the pseudo-Engima devices corresponding to each edge in the menu, and the
|
||||
// nodes in the menu they each connect to
|
||||
this.scramblers = new Array();
|
||||
for (let i=0; i<26; i++) {
|
||||
this.scramblers.push(new Array());
|
||||
}
|
||||
this.sharedScrambler = new SharedScrambler(this.baseRotors.slice(1), reflector);
|
||||
this.allScramblers = new Array();
|
||||
this.indicator = undefined;
|
||||
for (const edge of edges) {
|
||||
const cRotor = this.baseRotors[0].copy();
|
||||
const end1 = a2i(edge.node1.letter);
|
||||
const end2 = a2i(edge.node2.letter);
|
||||
const scrambler = new Scrambler(this.sharedScrambler, cRotor, edge.pos, end1, end2);
|
||||
if (edge.pos === 0) {
|
||||
this.indicator = scrambler;
|
||||
}
|
||||
this.scramblers[end1].push(scrambler);
|
||||
this.scramblers[end2].push(scrambler);
|
||||
this.allScramblers.push(scrambler);
|
||||
}
|
||||
// The Bombe uses a set of rotors to keep track of what settings it's testing. We cheat and
|
||||
// use one of the actual scramblers if there's one in the right position, but if not we'll
|
||||
// just create one.
|
||||
if (this.indicator === undefined) {
|
||||
this.indicator = new Scrambler(this.sharedScrambler, this.baseRotors[0].copy(), 0, undefined, undefined);
|
||||
this.allScramblers.push(this.indicator);
|
||||
}
|
||||
|
||||
this.testRegister = a2i(mostConnected.letter);
|
||||
// This is an arbitrary letter other than the most connected letter
|
||||
for (const edge of mostConnected.edges) {
|
||||
this.testInput = [this.testRegister, a2i(edge.getOther(mostConnected).letter)];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Build Rotor objects from list of rotor wiring strings.
|
||||
* @param {string[]} rotors - List of rotor wiring strings
|
||||
*/
|
||||
initRotors(rotors) {
|
||||
// This is ordered from the Enigma fast rotor to the slow, so bottom to top for the Bombe
|
||||
this.baseRotors = [];
|
||||
for (const rstr of rotors) {
|
||||
const rotor = new CopyRotor(rstr, "", "A", "A");
|
||||
this.baseRotors.push(rotor);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Replace the rotors and reflector in all components of this Bombe.
|
||||
* @param {string[]} rotors - List of rotor wiring strings
|
||||
* @param {Object} reflector - Reflector object
|
||||
*/
|
||||
changeRotors(rotors, reflector) {
|
||||
// At the end of the run, the rotors are all back in the same position they started
|
||||
this.initRotors(rotors);
|
||||
this.sharedScrambler.changeRotors(this.baseRotors.slice(1), reflector);
|
||||
for (const scrambler of this.allScramblers) {
|
||||
scrambler.changeRotor(this.baseRotors[0].copy());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* If we have a way of sending status messages, do so.
|
||||
* @param {...*} msg - Message to send.
|
||||
*/
|
||||
update(...msg) {
|
||||
if (this.updateFn !== undefined) {
|
||||
this.updateFn(...msg);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Recursive depth-first search on the menu graph.
|
||||
* This is used to a) isolate unconnected sub-graphs, and b) count the number of loops in each
|
||||
* of those graphs.
|
||||
* @param {Object} node - Node object to start the search from
|
||||
* @returns {[number, number, Object, number, Object[]} - loop count, node count, most connected
|
||||
* node, order of most connected node, list of edges in this sub-graph
|
||||
*/
|
||||
dfs(node) {
|
||||
let loops = 0;
|
||||
let nNodes = 1;
|
||||
let mostConnected = node;
|
||||
let nConnections = mostConnected.edges.size;
|
||||
let edges = new Set();
|
||||
node.visited = true;
|
||||
for (const edge of node.edges) {
|
||||
if (edge.visited) {
|
||||
// Already been here from the other end.
|
||||
continue;
|
||||
}
|
||||
edge.visited = true;
|
||||
edges.add(edge);
|
||||
const other = edge.getOther(node);
|
||||
if (other.visited) {
|
||||
// We have a loop, record that and continue
|
||||
loops += 1;
|
||||
continue;
|
||||
}
|
||||
// This is a newly visited node
|
||||
const [oLoops, oNNodes, oMostConnected, oNConnections, oEdges] = this.dfs(other);
|
||||
loops += oLoops;
|
||||
nNodes += oNNodes;
|
||||
edges = new Set([...edges, ...oEdges]);
|
||||
if (oNConnections > nConnections) {
|
||||
mostConnected = oMostConnected;
|
||||
nConnections = oNConnections;
|
||||
}
|
||||
}
|
||||
return [loops, nNodes, mostConnected, nConnections, edges];
|
||||
}
|
||||
|
||||
/**
|
||||
* Build a menu from the ciphertext and crib.
|
||||
* A menu is just a graph where letters in either the ciphertext or crib (Enigma is symmetric,
|
||||
* so there's no difference mathematically) are nodes and states of the Enigma machine itself
|
||||
* are the edges.
|
||||
* Additionally, we want a single connected graph, and of the subgraphs available, we want the
|
||||
* one with the most loops (since these generate feedback cycles which efficiently close off
|
||||
* disallowed states).
|
||||
* Finally, we want to identify the most connected node in that graph (as it's the best choice
|
||||
* of measurement point).
|
||||
* @returns [Object, Object[]] - the most connected node, and the list of edges in the subgraph
|
||||
*/
|
||||
makeMenu() {
|
||||
// First, we make a graph of all of the mappings given by the crib
|
||||
// Make all nodes first
|
||||
const nodes = new Map();
|
||||
for (const c of this.ciphertext + this.crib) {
|
||||
if (!nodes.has(c)) {
|
||||
const node = new Node(c);
|
||||
nodes.set(c, node);
|
||||
}
|
||||
}
|
||||
// Then all edges
|
||||
for (let i=0; i<this.crib.length; i++) {
|
||||
const a = this.crib[i];
|
||||
const b = this.ciphertext[i];
|
||||
new Edge(i, nodes.get(a), nodes.get(b));
|
||||
}
|
||||
// list of [loop_count, node_count, most_connected_node, connections_on_most_connected, edges]
|
||||
const graphs = [];
|
||||
// Then, for each unconnected subgraph, we count the number of loops and nodes
|
||||
for (const start of nodes.keys()) {
|
||||
if (nodes.get(start).visited) {
|
||||
continue;
|
||||
}
|
||||
const subgraph = this.dfs(nodes.get(start));
|
||||
graphs.push(subgraph);
|
||||
}
|
||||
// Return the subgraph with the most loops (ties broken by node count)
|
||||
graphs.sort((a, b) => {
|
||||
let result = b[0] - a[0];
|
||||
if (result === 0) {
|
||||
result = b[1] - a[1];
|
||||
}
|
||||
return result;
|
||||
});
|
||||
this.nLoops = graphs[0][0];
|
||||
return [graphs[0][2], graphs[0][4]];
|
||||
}
|
||||
|
||||
/**
|
||||
* Bombe electrical simulation. Energise a wire. For all connected wires (both via the diagonal
|
||||
* board and via the scramblers), energise them too, recursively.
|
||||
* @param {number} i - Bombe wire bundle
|
||||
* @param {number} j - Bombe stecker hypothesis wire within bundle
|
||||
*/
|
||||
energise(i, j) {
|
||||
const idx = 26*i + j;
|
||||
if (this.wires[idx]) {
|
||||
return;
|
||||
}
|
||||
this.wires[idx] = true;
|
||||
// Welchman's diagonal board: if A steckers to B, that implies B steckers to A. Handle
|
||||
// both.
|
||||
const idxPair = 26*j + i;
|
||||
this.wires[idxPair] = true;
|
||||
if (i === this.testRegister || j === this.testRegister) {
|
||||
this.energiseCount++;
|
||||
if (this.energiseCount === 26) {
|
||||
// no point continuing, bail out
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
for (let k=0; k<this.scramblers[i].length; k++) {
|
||||
const scrambler = this.scramblers[i][k];
|
||||
const out = scrambler.transform(j);
|
||||
const other = scrambler.getOtherEnd(i);
|
||||
// Lift the pre-check before the call, to save some function call overhead
|
||||
const otherIdx = 26*other + out;
|
||||
if (!this.wires[otherIdx]) {
|
||||
this.energise(other, out);
|
||||
if (this.energiseCount === 26) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (i === j) {
|
||||
return;
|
||||
}
|
||||
for (let k=0; k<this.scramblers[j].length; k++) {
|
||||
const scrambler = this.scramblers[j][k];
|
||||
const out = scrambler.transform(i);
|
||||
const other = scrambler.getOtherEnd(j);
|
||||
const otherIdx = 26*other + out;
|
||||
if (!this.wires[otherIdx]) {
|
||||
this.energise(other, out);
|
||||
if (this.energiseCount === 26) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Trial decryption at the current setting.
|
||||
* Used after we get a stop.
|
||||
* This applies the detected stecker pair if we have one. It does not handle the other
|
||||
* steckering or stepping (which is why we limit it to 26 characters, since it's guaranteed to
|
||||
* be wrong after that anyway).
|
||||
* @param {string} stecker - Known stecker spec string.
|
||||
* @returns {string}
|
||||
*/
|
||||
tryDecrypt(stecker) {
|
||||
const fastRotor = this.indicator.rotor;
|
||||
const initialPos = fastRotor.pos;
|
||||
const res = [];
|
||||
const plugboard = new Plugboard(stecker);
|
||||
// The indicator scrambler starts in the right place for the beginning of the ciphertext.
|
||||
for (let i=0; i<Math.min(26, this.ciphertext.length); i++) {
|
||||
const t = this.indicator.transform(plugboard.transform(a2i(this.ciphertext[i])));
|
||||
res.push(i2a(plugboard.transform(t)));
|
||||
this.indicator.step(1);
|
||||
}
|
||||
fastRotor.pos = initialPos;
|
||||
return res.join("");
|
||||
}
|
||||
|
||||
/**
|
||||
* Format a steckered pair, in sorted order to allow uniquing.
|
||||
* @param {number} a - A letter
|
||||
* @param {number} b - Its stecker pair
|
||||
* @returns {string}
|
||||
*/
|
||||
formatPair(a, b) {
|
||||
if (a < b) {
|
||||
return `${i2a(a)}${i2a(b)}`;
|
||||
}
|
||||
return `${i2a(b)}${i2a(a)}`;
|
||||
}
|
||||
|
||||
/**
|
||||
* The checking machine was used to manually verify Bombe stops. Using a device which was
|
||||
* effectively a non-stepping Enigma, the user would walk through each of the links in the
|
||||
* menu at the rotor positions determined by the Bombe. By starting with the stecker pair the
|
||||
* Bombe gives us, we find the stecker pair of each connected letter in the graph, and so on.
|
||||
* If a contradiction is reached, the stop is invalid. If not, we have most (but not
|
||||
* necessarily all) of the plugboard connections.
|
||||
* You will notice that this procedure is exactly the same as what the Bombe itself does, only
|
||||
* we start with an assumed good hypothesis and read out the stecker pair for every letter.
|
||||
* On the real hardware that wasn't practical, but fortunately we're not the real hardware, so
|
||||
* we don't need to implement the manual checking machine procedure.
|
||||
* @param {number} pair - The stecker pair of the test register.
|
||||
* @returns {string} - The empty string for invalid stops, or a plugboard configuration string
|
||||
* containing all known pairs.
|
||||
*/
|
||||
checkingMachine(pair) {
|
||||
if (pair !== this.testInput[1]) {
|
||||
// We have a new hypothesis for this stop - apply the new one.
|
||||
// De-energise the board
|
||||
for (let i=0; i<this.wires.length; i++) {
|
||||
this.wires[i] = false;
|
||||
}
|
||||
this.energiseCount = 0;
|
||||
// Re-energise with the corrected hypothesis
|
||||
this.energise(this.testRegister, pair);
|
||||
}
|
||||
|
||||
const results = new Set();
|
||||
results.add(this.formatPair(this.testRegister, pair));
|
||||
for (let i=0; i<26; i++) {
|
||||
let count = 0;
|
||||
let other;
|
||||
for (let j=0; j<26; j++) {
|
||||
if (this.wires[i*26 + j]) {
|
||||
count++;
|
||||
other = j;
|
||||
}
|
||||
}
|
||||
if (count > 1) {
|
||||
// This is an invalid stop.
|
||||
return "";
|
||||
} else if (count === 0) {
|
||||
// No information about steckering from this wire
|
||||
continue;
|
||||
}
|
||||
results.add(this.formatPair(i, other));
|
||||
}
|
||||
return [...results].join(" ");
|
||||
}
|
||||
|
||||
/**
|
||||
* Check to see if the Bombe has stopped. If so, process the stop.
|
||||
* @returns {(undefined|string[3])} - Undefined for no stop, or [rotor settings, plugboard settings, decryption preview]
|
||||
*/
|
||||
checkStop() {
|
||||
// Count the energised outputs
|
||||
const count = this.energiseCount;
|
||||
if (count === 26) {
|
||||
return undefined;
|
||||
}
|
||||
// If it's not all of them, we have a stop
|
||||
let steckerPair;
|
||||
// The Bombe tells us one stecker pair as well. The input wire and test register we
|
||||
// started with are hypothesised to be a stecker pair.
|
||||
if (count === 25) {
|
||||
// Our steckering hypothesis is wrong. Correct value is the un-energised wire.
|
||||
for (let j=0; j<26; j++) {
|
||||
if (!this.wires[26*this.testRegister + j]) {
|
||||
steckerPair = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else if (count === 1) {
|
||||
// This means our hypothesis for the steckering is correct.
|
||||
steckerPair = this.testInput[1];
|
||||
} else {
|
||||
// This was known as a "boxing stop" - we have a stop but not a single hypothesis.
|
||||
// If this happens a lot it implies the menu isn't good enough.
|
||||
// If we have the checking machine enabled, we're going to just check each wire in
|
||||
// turn. If we get 0 or 1 hit, great.
|
||||
// If we get multiple hits, or the checking machine is off, the user will just have to
|
||||
// deal with it.
|
||||
if (!this.check) {
|
||||
// We can't draw any conclusions about the steckering (one could maybe suggest
|
||||
// options in some cases, but too hard to present clearly).
|
||||
return [this.indicator.getPos(), "??", this.tryDecrypt("")];
|
||||
}
|
||||
let stecker = undefined;
|
||||
for (let i = 0; i < 26; i++) {
|
||||
const newStecker = this.checkingMachine(i);
|
||||
if (newStecker !== "") {
|
||||
if (stecker !== undefined) {
|
||||
// Multiple hypotheses can't be ruled out.
|
||||
return [this.indicator.getPos(), "??", this.tryDecrypt("")];
|
||||
}
|
||||
stecker = newStecker;
|
||||
}
|
||||
}
|
||||
if (stecker === undefined) {
|
||||
// Checking machine ruled all possibilities out.
|
||||
return undefined;
|
||||
}
|
||||
// If we got here, there was just one possibility allowed by the checking machine. Success.
|
||||
return [this.indicator.getPos(), stecker, this.tryDecrypt(stecker)];
|
||||
}
|
||||
let stecker;
|
||||
if (this.check) {
|
||||
stecker = this.checkingMachine(steckerPair);
|
||||
if (stecker === "") {
|
||||
// Invalid stop - don't count it, don't return it
|
||||
return undefined;
|
||||
}
|
||||
} else {
|
||||
stecker = `${i2a(this.testRegister)}${i2a(steckerPair)}`;
|
||||
}
|
||||
const testDecrypt = this.tryDecrypt(stecker);
|
||||
return [this.indicator.getPos(), stecker, testDecrypt];
|
||||
}
|
||||
|
||||
/**
|
||||
* Having set up the Bombe, do the actual attack run. This tries every possible rotor setting
|
||||
* and attempts to logically invalidate them. If it can't, it's added to the list of candidate
|
||||
* solutions.
|
||||
* @returns {string[][3]} - list of 3-tuples of candidate rotor setting, plugboard settings, and decryption preview
|
||||
*/
|
||||
run() {
|
||||
let stops = 0;
|
||||
const result = [];
|
||||
// For each possible rotor setting
|
||||
const nChecks = Math.pow(26, this.baseRotors.length);
|
||||
for (let i=1; i<=nChecks; i++) {
|
||||
// Benchmarking suggests this is faster than using .fill()
|
||||
for (let i=0; i<this.wires.length; i++) {
|
||||
this.wires[i] = false;
|
||||
}
|
||||
this.energiseCount = 0;
|
||||
// Energise the test input, follow the current through each scrambler
|
||||
// (and the diagonal board)
|
||||
this.energise(...this.testInput);
|
||||
|
||||
const stop = this.checkStop();
|
||||
if (stop !== undefined) {
|
||||
stops++;
|
||||
result.push(stop);
|
||||
}
|
||||
// Step all the scramblers
|
||||
// This loop counts how many rotors have reached their starting position (meaning the
|
||||
// next one needs to step as well)
|
||||
let n = 1;
|
||||
for (let j=1; j<this.baseRotors.length; j++) {
|
||||
if ((i % Math.pow(26, j)) === 0) {
|
||||
n++;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (n > 1) {
|
||||
this.sharedScrambler.step(n);
|
||||
}
|
||||
for (const scrambler of this.allScramblers) {
|
||||
scrambler.step();
|
||||
}
|
||||
// Send status messages at what seems to be a reasonably sensible frequency
|
||||
// (note this won't be triggered on 3-rotor runs - they run fast enough it doesn't seem necessary)
|
||||
if (n > 3) {
|
||||
this.update(this.nLoops, stops, i/nChecks);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
178
src/core/lib/Charts.mjs
Normal file
178
src/core/lib/Charts.mjs
Normal file
|
@ -0,0 +1,178 @@
|
|||
/**
|
||||
* @author tlwr [toby@toby.codes]
|
||||
* @author Matt C [me@mitt.dev]
|
||||
* @copyright Crown Copyright 2019
|
||||
* @license Apache-2.0
|
||||
*/
|
||||
|
||||
import OperationError from "../errors/OperationError";
|
||||
|
||||
/**
|
||||
* @constant
|
||||
* @default
|
||||
*/
|
||||
export const RECORD_DELIMITER_OPTIONS = ["Line feed", "CRLF"];
|
||||
|
||||
|
||||
/**
|
||||
* @constant
|
||||
* @default
|
||||
*/
|
||||
export const FIELD_DELIMITER_OPTIONS = ["Space", "Comma", "Semi-colon", "Colon", "Tab"];
|
||||
|
||||
|
||||
/**
|
||||
* Default from colour
|
||||
*
|
||||
* @constant
|
||||
* @default
|
||||
*/
|
||||
export const COLOURS = {
|
||||
min: "white",
|
||||
max: "black"
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Gets values from input for a plot.
|
||||
*
|
||||
* @param {string} input
|
||||
* @param {string} recordDelimiter
|
||||
* @param {string} fieldDelimiter
|
||||
* @param {boolean} columnHeadingsAreIncluded - whether we should skip the first record
|
||||
* @param {number} length
|
||||
* @returns {Object[]}
|
||||
*/
|
||||
export function getValues(input, recordDelimiter, fieldDelimiter, columnHeadingsAreIncluded, length) {
|
||||
let headings;
|
||||
const values = [];
|
||||
|
||||
input
|
||||
.split(recordDelimiter)
|
||||
.forEach((row, rowIndex) => {
|
||||
const split = row.split(fieldDelimiter);
|
||||
if (split.length !== length) throw new OperationError(`Each row must have length ${length}.`);
|
||||
|
||||
if (columnHeadingsAreIncluded && rowIndex === 0) {
|
||||
headings = split;
|
||||
} else {
|
||||
values.push(split);
|
||||
}
|
||||
});
|
||||
return { headings, values };
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Gets values from input for a scatter plot.
|
||||
*
|
||||
* @param {string} input
|
||||
* @param {string} recordDelimiter
|
||||
* @param {string} fieldDelimiter
|
||||
* @param {boolean} columnHeadingsAreIncluded - whether we should skip the first record
|
||||
* @returns {Object[]}
|
||||
*/
|
||||
export function getScatterValues(input, recordDelimiter, fieldDelimiter, columnHeadingsAreIncluded) {
|
||||
let { headings, values } = getValues(
|
||||
input,
|
||||
recordDelimiter,
|
||||
fieldDelimiter,
|
||||
columnHeadingsAreIncluded,
|
||||
2
|
||||
);
|
||||
|
||||
if (headings) {
|
||||
headings = {x: headings[0], y: headings[1]};
|
||||
}
|
||||
|
||||
values = values.map(row => {
|
||||
const x = parseFloat(row[0], 10),
|
||||
y = parseFloat(row[1], 10);
|
||||
|
||||
if (Number.isNaN(x)) throw new OperationError("Values must be numbers in base 10.");
|
||||
if (Number.isNaN(y)) throw new OperationError("Values must be numbers in base 10.");
|
||||
|
||||
return [x, y];
|
||||
});
|
||||
|
||||
return { headings, values };
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Gets values from input for a scatter plot with colour from the third column.
|
||||
*
|
||||
* @param {string} input
|
||||
* @param {string} recordDelimiter
|
||||
* @param {string} fieldDelimiter
|
||||
* @param {boolean} columnHeadingsAreIncluded - whether we should skip the first record
|
||||
* @returns {Object[]}
|
||||
*/
|
||||
export function getScatterValuesWithColour(input, recordDelimiter, fieldDelimiter, columnHeadingsAreIncluded) {
|
||||
let { headings, values } = getValues(
|
||||
input,
|
||||
recordDelimiter, fieldDelimiter,
|
||||
columnHeadingsAreIncluded,
|
||||
3
|
||||
);
|
||||
|
||||
if (headings) {
|
||||
headings = {x: headings[0], y: headings[1]};
|
||||
}
|
||||
|
||||
values = values.map(row => {
|
||||
const x = parseFloat(row[0], 10),
|
||||
y = parseFloat(row[1], 10),
|
||||
colour = row[2];
|
||||
|
||||
if (Number.isNaN(x)) throw new OperationError("Values must be numbers in base 10.");
|
||||
if (Number.isNaN(y)) throw new OperationError("Values must be numbers in base 10.");
|
||||
|
||||
return [x, y, colour];
|
||||
});
|
||||
|
||||
return { headings, values };
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets values from input for a time series plot.
|
||||
*
|
||||
* @param {string} input
|
||||
* @param {string} recordDelimiter
|
||||
* @param {string} fieldDelimiter
|
||||
* @param {boolean} columnHeadingsAreIncluded - whether we should skip the first record
|
||||
* @returns {Object[]}
|
||||
*/
|
||||
export function getSeriesValues(input, recordDelimiter, fieldDelimiter, columnHeadingsAreIncluded) {
|
||||
const { values } = getValues(
|
||||
input,
|
||||
recordDelimiter, fieldDelimiter,
|
||||
false,
|
||||
3
|
||||
);
|
||||
|
||||
let xValues = new Set();
|
||||
const series = {};
|
||||
|
||||
values.forEach(row => {
|
||||
const serie = row[0],
|
||||
xVal = row[1],
|
||||
val = parseFloat(row[2], 10);
|
||||
|
||||
if (Number.isNaN(val)) throw new OperationError("Values must be numbers in base 10.");
|
||||
|
||||
xValues.add(xVal);
|
||||
if (typeof series[serie] === "undefined") series[serie] = {};
|
||||
series[serie][xVal] = val;
|
||||
});
|
||||
|
||||
xValues = new Array(...xValues);
|
||||
|
||||
const seriesList = [];
|
||||
for (const seriesName in series) {
|
||||
const serie = series[seriesName];
|
||||
seriesList.push({name: seriesName, data: serie});
|
||||
}
|
||||
|
||||
return { xValues, series: seriesList };
|
||||
}
|
369
src/core/lib/Enigma.mjs
Normal file
369
src/core/lib/Enigma.mjs
Normal file
|
@ -0,0 +1,369 @@
|
|||
/**
|
||||
* Emulation of the Enigma machine.
|
||||
*
|
||||
* @author s2224834
|
||||
* @copyright Crown Copyright 2019
|
||||
* @license Apache-2.0
|
||||
*/
|
||||
import OperationError from "../errors/OperationError";
|
||||
import Utils from "../Utils";
|
||||
|
||||
/**
|
||||
* Provided default Enigma rotor set.
|
||||
* These are specified as a list of mappings from the letters A through Z in order, optionally
|
||||
* followed by < and a list of letters at which the rotor steps.
|
||||
*/
|
||||
export const ROTORS = [
|
||||
{name: "I", value: "EKMFLGDQVZNTOWYHXUSPAIBRCJ<R"},
|
||||
{name: "II", value: "AJDKSIRUXBLHWTMCQGZNPYFVOE<F"},
|
||||
{name: "III", value: "BDFHJLCPRTXVZNYEIWGAKMUSQO<W"},
|
||||
{name: "IV", value: "ESOVPZJAYQUIRHXLNFTGKDCMWB<K"},
|
||||
{name: "V", value: "VZBRGITYUPSDNHLXAWMJQOFECK<A"},
|
||||
{name: "VI", value: "JPGVOUMFYQBENHZRDKASXLICTW<AN"},
|
||||
{name: "VII", value: "NZJHGRCXMYSWBOUFAIVLPEKQDT<AN"},
|
||||
{name: "VIII", value: "FKQHTLXOCBJSPDZRAMEWNIUYGV<AN"},
|
||||
];
|
||||
|
||||
export const ROTORS_FOURTH = [
|
||||
{name: "Beta", value: "LEYJVCNIXWPBQMDRTAKZGFUHOS"},
|
||||
{name: "Gamma", value: "FSOKANUERHMBTIYCWLQPZXVGJD"},
|
||||
];
|
||||
|
||||
/**
|
||||
* Provided default Enigma reflector set.
|
||||
* These are specified as 13 space-separated transposed pairs covering every letter.
|
||||
*/
|
||||
export const REFLECTORS = [
|
||||
{name: "B", value: "AY BR CU DH EQ FS GL IP JX KN MO TZ VW"},
|
||||
{name: "C", value: "AF BV CP DJ EI GO HY KR LZ MX NW TQ SU"},
|
||||
{name: "B Thin", value: "AE BN CK DQ FU GY HW IJ LO MP RX SZ TV"},
|
||||
{name: "C Thin", value: "AR BD CO EJ FN GT HK IV LM PW QZ SX UY"},
|
||||
];
|
||||
|
||||
export const LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".split("");
|
||||
|
||||
/**
|
||||
* Map a letter to a number in 0..25.
|
||||
*
|
||||
* @param {char} c
|
||||
* @param {boolean} permissive - Case insensitive; don't throw errors on other chars.
|
||||
* @returns {number}
|
||||
*/
|
||||
export function a2i(c, permissive=false) {
|
||||
const i = Utils.ord(c);
|
||||
if (i >= 65 && i <= 90) {
|
||||
return i - 65;
|
||||
}
|
||||
if (permissive) {
|
||||
// Allow case insensitivity
|
||||
if (i >= 97 && i <= 122) {
|
||||
return i - 97;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
throw new OperationError("a2i called on non-uppercase ASCII character");
|
||||
}
|
||||
|
||||
/**
|
||||
* Map a number in 0..25 to a letter.
|
||||
*
|
||||
* @param {number} i
|
||||
* @returns {char}
|
||||
*/
|
||||
export function i2a(i) {
|
||||
if (i >= 0 && i < 26) {
|
||||
return Utils.chr(i+65);
|
||||
}
|
||||
throw new OperationError("i2a called on value outside 0..25");
|
||||
}
|
||||
|
||||
/**
|
||||
* A rotor in the Enigma machine.
|
||||
*/
|
||||
export class Rotor {
|
||||
/**
|
||||
* Rotor constructor.
|
||||
*
|
||||
* @param {string} wiring - A 26 character string of the wiring order.
|
||||
* @param {string} steps - A 0..26 character string of stepping points.
|
||||
* @param {char} ringSetting - The ring setting.
|
||||
* @param {char} initialPosition - The initial position of the rotor.
|
||||
*/
|
||||
constructor(wiring, steps, ringSetting, initialPosition) {
|
||||
if (!/^[A-Z]{26}$/.test(wiring)) {
|
||||
throw new OperationError("Rotor wiring must be 26 unique uppercase letters");
|
||||
}
|
||||
if (!/^[A-Z]{0,26}$/.test(steps)) {
|
||||
throw new OperationError("Rotor steps must be 0-26 unique uppercase letters");
|
||||
}
|
||||
if (!/^[A-Z]$/.test(ringSetting)) {
|
||||
throw new OperationError("Rotor ring setting must be exactly one uppercase letter");
|
||||
}
|
||||
if (!/^[A-Z]$/.test(initialPosition)) {
|
||||
throw new OperationError("Rotor initial position must be exactly one uppercase letter");
|
||||
}
|
||||
this.map = new Array(26);
|
||||
this.revMap = new Array(26);
|
||||
const uniq = {};
|
||||
for (let i=0; i<LETTERS.length; i++) {
|
||||
const a = a2i(LETTERS[i]);
|
||||
const b = a2i(wiring[i]);
|
||||
this.map[a] = b;
|
||||
this.revMap[b] = a;
|
||||
uniq[b] = true;
|
||||
}
|
||||
if (Object.keys(uniq).length !== LETTERS.length) {
|
||||
throw new OperationError("Rotor wiring must have each letter exactly once");
|
||||
}
|
||||
const rs = a2i(ringSetting);
|
||||
this.steps = new Set();
|
||||
for (const x of steps) {
|
||||
this.steps.add(Utils.mod(a2i(x) - rs, 26));
|
||||
}
|
||||
if (this.steps.size !== steps.length) {
|
||||
// This isn't strictly fatal, but it's probably a mistake
|
||||
throw new OperationError("Rotor steps must be unique");
|
||||
}
|
||||
this.pos = Utils.mod(a2i(initialPosition) - rs, 26);
|
||||
}
|
||||
|
||||
/**
|
||||
* Step the rotor forward by one.
|
||||
*/
|
||||
step() {
|
||||
this.pos = Utils.mod(this.pos + 1, 26);
|
||||
return this.pos;
|
||||
}
|
||||
|
||||
/**
|
||||
* Transform a character through this rotor forwards.
|
||||
*
|
||||
* @param {number} c - The character.
|
||||
* @returns {number}
|
||||
*/
|
||||
transform(c) {
|
||||
return Utils.mod(this.map[Utils.mod(c + this.pos, 26)] - this.pos, 26);
|
||||
}
|
||||
|
||||
/**
|
||||
* Transform a character through this rotor backwards.
|
||||
*
|
||||
* @param {number} c - The character.
|
||||
* @returns {number}
|
||||
*/
|
||||
revTransform(c) {
|
||||
return Utils.mod(this.revMap[Utils.mod(c + this.pos, 26)] - this.pos, 26);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Base class for plugboard and reflector (since these do effectively the same
|
||||
* thing).
|
||||
*/
|
||||
class PairMapBase {
|
||||
/**
|
||||
* PairMapBase constructor.
|
||||
*
|
||||
* @param {string} pairs - A whitespace separated string of letter pairs to swap.
|
||||
* @param {string} [name='PairMapBase'] - For errors, the name of this object.
|
||||
*/
|
||||
constructor(pairs, name="PairMapBase") {
|
||||
// I've chosen to make whitespace significant here to make a) code and
|
||||
// b) inputs easier to read
|
||||
this.pairs = pairs;
|
||||
this.map = {};
|
||||
if (pairs === "") {
|
||||
return;
|
||||
}
|
||||
pairs.split(/\s+/).forEach(pair => {
|
||||
if (!/^[A-Z]{2}$/.test(pair)) {
|
||||
throw new OperationError(name + " must be a whitespace-separated list of uppercase letter pairs");
|
||||
}
|
||||
const a = a2i(pair[0]), b = a2i(pair[1]);
|
||||
if (a === b) {
|
||||
// self-stecker
|
||||
return;
|
||||
}
|
||||
if (this.map.hasOwnProperty(a)) {
|
||||
throw new OperationError(`${name} connects ${pair[0]} more than once`);
|
||||
}
|
||||
if (this.map.hasOwnProperty(b)) {
|
||||
throw new OperationError(`${name} connects ${pair[1]} more than once`);
|
||||
}
|
||||
this.map[a] = b;
|
||||
this.map[b] = a;
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Transform a character through this object.
|
||||
* Returns other characters unchanged.
|
||||
*
|
||||
* @param {number} c - The character.
|
||||
* @returns {number}
|
||||
*/
|
||||
transform(c) {
|
||||
if (!this.map.hasOwnProperty(c)) {
|
||||
return c;
|
||||
}
|
||||
return this.map[c];
|
||||
}
|
||||
|
||||
/**
|
||||
* Alias for transform, to allow interchangeable use with rotors.
|
||||
*
|
||||
* @param {number} c - The character.
|
||||
* @returns {number}
|
||||
*/
|
||||
revTransform(c) {
|
||||
return this.transform(c);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Reflector. PairMapBase but requires that all characters are accounted for.
|
||||
*
|
||||
* Includes a couple of optimisations on that basis.
|
||||
*/
|
||||
export class Reflector extends PairMapBase {
|
||||
/**
|
||||
* Reflector constructor. See PairMapBase.
|
||||
* Additional restriction: every character must be accounted for.
|
||||
*/
|
||||
constructor(pairs) {
|
||||
super(pairs, "Reflector");
|
||||
const s = Object.keys(this.map).length;
|
||||
if (s !== 26) {
|
||||
throw new OperationError("Reflector must have exactly 13 pairs covering every letter");
|
||||
}
|
||||
const optMap = new Array(26);
|
||||
for (const x of Object.keys(this.map)) {
|
||||
optMap[x] = this.map[x];
|
||||
}
|
||||
this.map = optMap;
|
||||
}
|
||||
|
||||
/**
|
||||
* Transform a character through this object.
|
||||
*
|
||||
* @param {number} c - The character.
|
||||
* @returns {number}
|
||||
*/
|
||||
transform(c) {
|
||||
return this.map[c];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Plugboard. Unmodified PairMapBase.
|
||||
*/
|
||||
export class Plugboard extends PairMapBase {
|
||||
/**
|
||||
* Plugboard constructor. See PairMapbase.
|
||||
*/
|
||||
constructor(pairs) {
|
||||
super(pairs, "Plugboard");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Base class for the Enigma machine itself. Holds rotors, a reflector, and a plugboard.
|
||||
*/
|
||||
export class EnigmaBase {
|
||||
/**
|
||||
* EnigmaBase constructor.
|
||||
*
|
||||
* @param {Object[]} rotors - List of Rotors.
|
||||
* @param {Object} reflector - A Reflector.
|
||||
* @param {Plugboard} plugboard - A Plugboard.
|
||||
*/
|
||||
constructor(rotors, reflector, plugboard) {
|
||||
this.rotors = rotors;
|
||||
this.rotorsRev = [].concat(rotors).reverse();
|
||||
this.reflector = reflector;
|
||||
this.plugboard = plugboard;
|
||||
}
|
||||
|
||||
/**
|
||||
* Step the rotors forward by one.
|
||||
*
|
||||
* This happens before the output character is generated.
|
||||
*
|
||||
* Note that rotor 4, if it's there, never steps.
|
||||
*
|
||||
* Why is all the logic in EnigmaBase and not a nice neat method on
|
||||
* Rotor that knows when it should advance the next item?
|
||||
* Because the double stepping anomaly is a thing. tl;dr if the left rotor
|
||||
* should step the next time the middle rotor steps, the middle rotor will
|
||||
* immediately step.
|
||||
*/
|
||||
step() {
|
||||
const r0 = this.rotors[0];
|
||||
const r1 = this.rotors[1];
|
||||
r0.step();
|
||||
// The second test here is the double-stepping anomaly
|
||||
if (r0.steps.has(r0.pos) || r1.steps.has(Utils.mod(r1.pos + 1, 26))) {
|
||||
r1.step();
|
||||
if (r1.steps.has(r1.pos)) {
|
||||
const r2 = this.rotors[2];
|
||||
r2.step();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypt (or decrypt) some data.
|
||||
* Takes an arbitrary string and runs the Engima machine on that data from
|
||||
* *its current state*, and outputs the result. Non-alphabetic characters
|
||||
* are returned unchanged.
|
||||
*
|
||||
* @param {string} input - Data to encrypt.
|
||||
* @returns {string}
|
||||
*/
|
||||
crypt(input) {
|
||||
let result = "";
|
||||
for (const c of input) {
|
||||
let letter = a2i(c, true);
|
||||
if (letter === -1) {
|
||||
result += c;
|
||||
continue;
|
||||
}
|
||||
// First, step the rotors forward.
|
||||
this.step();
|
||||
// Now, run through the plugboard.
|
||||
letter = this.plugboard.transform(letter);
|
||||
// Then through each wheel in sequence, through the reflector, and
|
||||
// backwards through the wheels again.
|
||||
for (const rotor of this.rotors) {
|
||||
letter = rotor.transform(letter);
|
||||
}
|
||||
letter = this.reflector.transform(letter);
|
||||
for (const rotor of this.rotorsRev) {
|
||||
letter = rotor.revTransform(letter);
|
||||
}
|
||||
// Finally, back through the plugboard.
|
||||
letter = this.plugboard.revTransform(letter);
|
||||
result += i2a(letter);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* The Enigma machine itself. Holds 3-4 rotors, a reflector, and a plugboard.
|
||||
*/
|
||||
export class EnigmaMachine extends EnigmaBase {
|
||||
/**
|
||||
* EnigmaMachine constructor.
|
||||
*
|
||||
* @param {Object[]} rotors - List of Rotors.
|
||||
* @param {Object} reflector - A Reflector.
|
||||
* @param {Plugboard} plugboard - A Plugboard.
|
||||
*/
|
||||
constructor(rotors, reflector, plugboard) {
|
||||
super(rotors, reflector, plugboard);
|
||||
if (rotors.length !== 3 && rotors.length !== 4) {
|
||||
throw new OperationError("Enigma must have 3 or 4 rotors");
|
||||
}
|
||||
}
|
||||
}
|
|
@ -100,7 +100,7 @@ export function fromHex(data, delim="Auto", byteLen=2) {
|
|||
/**
|
||||
* To Hexadecimal delimiters.
|
||||
*/
|
||||
export const TO_HEX_DELIM_OPTIONS = ["Space", "Comma", "Semi-colon", "Colon", "Line feed", "CRLF", "0x", "\\x", "None"];
|
||||
export const TO_HEX_DELIM_OPTIONS = ["Space", "Percent", "Comma", "Semi-colon", "Colon", "Line feed", "CRLF", "0x", "\\x", "None"];
|
||||
|
||||
|
||||
/**
|
||||
|
|
285
src/core/lib/Protobuf.mjs
Normal file
285
src/core/lib/Protobuf.mjs
Normal file
|
@ -0,0 +1,285 @@
|
|||
import Utils from "../Utils";
|
||||
|
||||
/**
|
||||
* Protobuf lib. Contains functions to decode protobuf serialised
|
||||
* data without a schema or .proto file.
|
||||
*
|
||||
* Provides utility functions to encode and decode variable length
|
||||
* integers (varint).
|
||||
*
|
||||
* @author GCHQ Contributor [3]
|
||||
* @copyright Crown Copyright 2019
|
||||
* @license Apache-2.0
|
||||
*/
|
||||
class Protobuf {
|
||||
|
||||
/**
|
||||
* Protobuf constructor
|
||||
*
|
||||
* @param {byteArray} data
|
||||
*/
|
||||
constructor(data) {
|
||||
// Check we have a byteArray
|
||||
if (data instanceof Array) {
|
||||
this.data = data;
|
||||
} else {
|
||||
throw new Error("Protobuf input must be a byteArray");
|
||||
}
|
||||
|
||||
// Set up masks
|
||||
this.TYPE = 0x07;
|
||||
this.NUMBER = 0x78;
|
||||
this.MSB = 0x80;
|
||||
this.VALUE = 0x7f;
|
||||
|
||||
// Declare offset and length
|
||||
this.offset = 0;
|
||||
this.LENGTH = data.length;
|
||||
}
|
||||
|
||||
// Public Functions
|
||||
|
||||
/**
|
||||
* Encode a varint from a number
|
||||
*
|
||||
* @param {number} number
|
||||
* @returns {byteArray}
|
||||
*/
|
||||
static varIntEncode(number) {
|
||||
const MSB = 0x80,
|
||||
VALUE = 0x7f,
|
||||
MSBALL = ~VALUE,
|
||||
INT = Math.pow(2, 31);
|
||||
const out = [];
|
||||
let offset = 0;
|
||||
|
||||
while (number >= INT) {
|
||||
out[offset++] = (number & 0xff) | MSB;
|
||||
number /= 128;
|
||||
}
|
||||
while (number & MSBALL) {
|
||||
out[offset++] = (number & 0xff) | MSB;
|
||||
number >>>= 7;
|
||||
}
|
||||
out[offset] = number | 0;
|
||||
return out;
|
||||
}
|
||||
|
||||
/**
|
||||
* Decode a varint from the byteArray
|
||||
*
|
||||
* @param {byteArray} input
|
||||
* @returns {number}
|
||||
*/
|
||||
static varIntDecode(input) {
|
||||
const pb = new Protobuf(input);
|
||||
return pb._varInt();
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse Protobuf data
|
||||
*
|
||||
* @param {byteArray} input
|
||||
* @returns {Object}
|
||||
*/
|
||||
static decode(input) {
|
||||
const pb = new Protobuf(input);
|
||||
return pb._parse();
|
||||
}
|
||||
|
||||
// Private Class Functions
|
||||
|
||||
/**
|
||||
* Main private parsing function
|
||||
*
|
||||
* @private
|
||||
* @returns {Object}
|
||||
*/
|
||||
_parse() {
|
||||
let object = {};
|
||||
// Continue reading whilst we still have data
|
||||
while (this.offset < this.LENGTH) {
|
||||
const field = this._parseField();
|
||||
object = this._addField(field, object);
|
||||
}
|
||||
// Throw an error if we have gone beyond the end of the data
|
||||
if (this.offset > this.LENGTH) {
|
||||
throw new Error("Exhausted Buffer");
|
||||
}
|
||||
return object;
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a field read from the protobuf data into the Object. As
|
||||
* protobuf fields can appear multiple times, if the field already
|
||||
* exists we need to add the new field into an array of fields
|
||||
* for that key.
|
||||
*
|
||||
* @private
|
||||
* @param {Object} field
|
||||
* @param {Object} object
|
||||
* @returns {Object}
|
||||
*/
|
||||
_addField(field, object) {
|
||||
// Get the field key/values
|
||||
const key = field.key;
|
||||
const value = field.value;
|
||||
object[key] = object.hasOwnProperty(key) ?
|
||||
object[key] instanceof Array ?
|
||||
object[key].concat([value]) :
|
||||
[object[key], value] :
|
||||
value;
|
||||
return object;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse a field and return the Object read from the record
|
||||
*
|
||||
* @private
|
||||
* @returns {Object}
|
||||
*/
|
||||
_parseField() {
|
||||
// Get the field headers
|
||||
const header = this._fieldHeader();
|
||||
const type = header.type;
|
||||
const key = header.key;
|
||||
switch (type) {
|
||||
// varint
|
||||
case 0:
|
||||
return { "key": key, "value": this._varInt() };
|
||||
// fixed 64
|
||||
case 1:
|
||||
return { "key": key, "value": this._uint64() };
|
||||
// length delimited
|
||||
case 2:
|
||||
return { "key": key, "value": this._lenDelim() };
|
||||
// fixed 32
|
||||
case 5:
|
||||
return { "key": key, "value": this._uint32() };
|
||||
// unknown type
|
||||
default:
|
||||
throw new Error("Unknown type 0x" + type.toString(16));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse the field header and return the type and key
|
||||
*
|
||||
* @private
|
||||
* @returns {Object}
|
||||
*/
|
||||
_fieldHeader() {
|
||||
// Make sure we call type then number to preserve offset
|
||||
return { "type": this._fieldType(), "key": this._fieldNumber() };
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse the field type from the field header. Type is stored in the
|
||||
* lower 3 bits of the tag byte. This does not move the offset on as
|
||||
* we need to read the field number from the tag byte too.
|
||||
*
|
||||
* @private
|
||||
* @returns {number}
|
||||
*/
|
||||
_fieldType() {
|
||||
// Field type stored in lower 3 bits of tag byte
|
||||
return this.data[this.offset] & this.TYPE;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse the field number (i.e. the key) from the field header. The
|
||||
* field number is stored in the upper 5 bits of the tag byte - but
|
||||
* is also varint encoded so the follow on bytes may need to be read
|
||||
* when field numbers are > 15.
|
||||
*
|
||||
* @private
|
||||
* @returns {number}
|
||||
*/
|
||||
_fieldNumber() {
|
||||
let shift = -3;
|
||||
let fieldNumber = 0;
|
||||
do {
|
||||
fieldNumber += shift < 28 ?
|
||||
shift === -3 ?
|
||||
(this.data[this.offset] & this.NUMBER) >> -shift :
|
||||
(this.data[this.offset] & this.VALUE) << shift :
|
||||
(this.data[this.offset] & this.VALUE) * Math.pow(2, shift);
|
||||
shift += 7;
|
||||
} while ((this.data[this.offset++] & this.MSD) === this.MSB);
|
||||
return fieldNumber;
|
||||
}
|
||||
|
||||
// Field Parsing Functions
|
||||
|
||||
/**
|
||||
* Read off a varint from the data
|
||||
*
|
||||
* @private
|
||||
* @returns {number}
|
||||
*/
|
||||
_varInt() {
|
||||
let value = 0;
|
||||
let shift = 0;
|
||||
// Keep reading while upper bit set
|
||||
do {
|
||||
value += shift < 28 ?
|
||||
(this.data[this.offset] & this.VALUE) << shift :
|
||||
(this.data[this.offset] & this.VALUE) * Math.pow(2, shift);
|
||||
shift += 7;
|
||||
} while ((this.data[this.offset++] & this.MSB) === this.MSB);
|
||||
return value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Read off a 64 bit unsigned integer from the data
|
||||
*
|
||||
* @private
|
||||
* @returns {number}
|
||||
*/
|
||||
_uint64() {
|
||||
// Read off a Uint64
|
||||
let num = this.data[this.offset++] * 0x1000000 + (this.data[this.offset++] << 16) + (this.data[this.offset++] << 8) + this.data[this.offset++];
|
||||
num = num * 0x100000000 + this.data[this.offset++] * 0x1000000 + (this.data[this.offset++] << 16) + (this.data[this.offset++] << 8) + this.data[this.offset++];
|
||||
return num;
|
||||
}
|
||||
|
||||
/**
|
||||
* Read off a length delimited field from the data
|
||||
*
|
||||
* @private
|
||||
* @returns {Object|string}
|
||||
*/
|
||||
_lenDelim() {
|
||||
// Read off the field length
|
||||
const length = this._varInt();
|
||||
const fieldBytes = this.data.slice(this.offset, this.offset + length);
|
||||
let field;
|
||||
try {
|
||||
// Attempt to parse as a new Protobuf Object
|
||||
const pbObject = new Protobuf(fieldBytes);
|
||||
field = pbObject._parse();
|
||||
} catch (err) {
|
||||
// Otherwise treat as bytes
|
||||
field = Utils.byteArrayToChars(fieldBytes);
|
||||
}
|
||||
// Move the offset and return the field
|
||||
this.offset += length;
|
||||
return field;
|
||||
}
|
||||
|
||||
/**
|
||||
* Read a 32 bit unsigned integer from the data
|
||||
*
|
||||
* @private
|
||||
* @returns {number}
|
||||
*/
|
||||
_uint32() {
|
||||
// Use a dataview to read off the integer
|
||||
const dataview = new DataView(new Uint8Array(this.data.slice(this.offset, this.offset + 4)).buffer);
|
||||
const value = dataview.getUint32(0);
|
||||
this.offset += 4;
|
||||
return value;
|
||||
}
|
||||
}
|
||||
|
||||
export default Protobuf;
|
227
src/core/lib/Typex.mjs
Normal file
227
src/core/lib/Typex.mjs
Normal file
|
@ -0,0 +1,227 @@
|
|||
/**
|
||||
* Emulation of the Typex machine.
|
||||
*
|
||||
* @author s2224834
|
||||
* @author The National Museum of Computing - Bombe Rebuild Project
|
||||
* @copyright Crown Copyright 2019
|
||||
* @license Apache-2.0
|
||||
*/
|
||||
import OperationError from "../errors/OperationError";
|
||||
import * as Enigma from "../lib/Enigma";
|
||||
import Utils from "../Utils";
|
||||
|
||||
/**
|
||||
* A set of example Typex rotors. No Typex rotor wirings are publicly available, so these are
|
||||
* randomised.
|
||||
*/
|
||||
export const ROTORS = [
|
||||
{name: "Example 1", value: "MCYLPQUVRXGSAOWNBJEZDTFKHI<BFHNQUW"},
|
||||
{name: "Example 2", value: "KHWENRCBISXJQGOFMAPVYZDLTU<BFHNQUW"},
|
||||
{name: "Example 3", value: "BYPDZMGIKQCUSATREHOJNLFWXV<BFHNQUW"},
|
||||
{name: "Example 4", value: "ZANJCGDLVHIXOBRPMSWQUKFYET<BFHNQUW"},
|
||||
{name: "Example 5", value: "QXBGUTOVFCZPJIHSWERYNDAMLK<BFHNQUW"},
|
||||
{name: "Example 6", value: "BDCNWUEIQVFTSXALOGZJYMHKPR<BFHNQUW"},
|
||||
{name: "Example 7", value: "WJUKEIABMSGFTQZVCNPHORDXYL<BFHNQUW"},
|
||||
{name: "Example 8", value: "TNVCZXDIPFWQKHSJMAOYLEURGB<BFHNQUW"},
|
||||
];
|
||||
|
||||
/**
|
||||
* An example Typex reflector. Again, randomised.
|
||||
*/
|
||||
export const REFLECTORS = [
|
||||
{name: "Example", value: "AN BC FG IE KD LU MH OR TS VZ WQ XJ YP"},
|
||||
];
|
||||
|
||||
// Special character handling on Typex keyboard
|
||||
const KEYBOARD = {
|
||||
"Q": "1", "W": "2", "E": "3", "R": "4", "T": "5", "Y": "6", "U": "7", "I": "8", "O": "9", "P": "0",
|
||||
"A": "-", "S": "/", "D": "Z", "F": "%", "G": "X", "H": "£", "K": "(", "L": ")",
|
||||
"C": "V", "B": "'", "N": ",", "M": "."
|
||||
};
|
||||
const KEYBOARD_REV = {};
|
||||
for (const i of Object.keys(KEYBOARD)) {
|
||||
KEYBOARD_REV[KEYBOARD[i]] = i;
|
||||
}
|
||||
|
||||
/**
|
||||
* Typex machine. A lot like the Enigma, but five rotors, of which the first two are static.
|
||||
*/
|
||||
export class TypexMachine extends Enigma.EnigmaBase {
|
||||
/**
|
||||
* TypexMachine constructor.
|
||||
*
|
||||
* @param {Object[]} rotors - List of Rotors.
|
||||
* @param {Object} reflector - A Reflector.
|
||||
* @param {Plugboard} plugboard - A Plugboard.
|
||||
*/
|
||||
constructor(rotors, reflector, plugboard, keyboard) {
|
||||
super(rotors, reflector, plugboard);
|
||||
if (rotors.length !== 5) {
|
||||
throw new OperationError("Typex must have 5 rotors");
|
||||
}
|
||||
this.keyboard = keyboard;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is the same as the Enigma step function, it's just that the right-
|
||||
* most two rotors are static.
|
||||
*/
|
||||
step() {
|
||||
const r0 = this.rotors[2];
|
||||
const r1 = this.rotors[3];
|
||||
r0.step();
|
||||
// The second test here is the double-stepping anomaly
|
||||
if (r0.steps.has(r0.pos) || r1.steps.has(Utils.mod(r1.pos + 1, 26))) {
|
||||
r1.step();
|
||||
if (r1.steps.has(r1.pos)) {
|
||||
const r2 = this.rotors[4];
|
||||
r2.step();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypt/decrypt data. This is identical to the Enigma version cryptographically, but we have
|
||||
* additional handling for the Typex's keyboard (which handles various special characters by
|
||||
* mapping them to particular letter combinations).
|
||||
*
|
||||
* @param {string} input - The data to encrypt/decrypt.
|
||||
* @return {string}
|
||||
*/
|
||||
crypt(input) {
|
||||
let inputMod = input;
|
||||
if (this.keyboard === "Encrypt") {
|
||||
inputMod = "";
|
||||
// true = in symbol mode
|
||||
let mode = false;
|
||||
for (const x of input) {
|
||||
if (x === " ") {
|
||||
inputMod += "X";
|
||||
} else if (mode) {
|
||||
if (KEYBOARD_REV.hasOwnProperty(x)) {
|
||||
inputMod += KEYBOARD_REV[x];
|
||||
} else {
|
||||
mode = false;
|
||||
inputMod += "V" + x;
|
||||
}
|
||||
} else {
|
||||
if (KEYBOARD_REV.hasOwnProperty(x)) {
|
||||
mode = true;
|
||||
inputMod += "Z" + KEYBOARD_REV[x];
|
||||
} else {
|
||||
inputMod += x;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const output = super.crypt(inputMod);
|
||||
|
||||
let outputMod = output;
|
||||
if (this.keyboard === "Decrypt") {
|
||||
outputMod = "";
|
||||
let mode = false;
|
||||
for (const x of output) {
|
||||
if (x === "X") {
|
||||
outputMod += " ";
|
||||
} else if (x === "V") {
|
||||
mode = false;
|
||||
} else if (x === "Z") {
|
||||
mode = true;
|
||||
} else if (mode) {
|
||||
outputMod += KEYBOARD[x];
|
||||
} else {
|
||||
outputMod += x;
|
||||
}
|
||||
}
|
||||
}
|
||||
return outputMod;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Typex rotor. Like an Enigma rotor, but no ring setting, and can be reversed.
|
||||
*/
|
||||
export class Rotor extends Enigma.Rotor {
|
||||
/**
|
||||
* Rotor constructor.
|
||||
*
|
||||
* @param {string} wiring - A 26 character string of the wiring order.
|
||||
* @param {string} steps - A 0..26 character string of stepping points.
|
||||
* @param {bool} reversed - Whether to reverse the rotor.
|
||||
* @param {char} ringSetting - Ring setting of the rotor.
|
||||
* @param {char} initialPosition - The initial position of the rotor.
|
||||
*/
|
||||
constructor(wiring, steps, reversed, ringSetting, initialPos) {
|
||||
let wiringMod = wiring;
|
||||
if (reversed) {
|
||||
const outMap = new Array(26);
|
||||
for (let i=0; i<26; i++) {
|
||||
// wiring[i] is the original output
|
||||
// Enigma.LETTERS[i] is the original input
|
||||
const input = Utils.mod(26 - Enigma.a2i(wiring[i]), 26);
|
||||
const output = Enigma.i2a(Utils.mod(26 - Enigma.a2i(Enigma.LETTERS[i]), 26));
|
||||
outMap[input] = output;
|
||||
}
|
||||
wiringMod = outMap.join("");
|
||||
}
|
||||
super(wiringMod, steps, ringSetting, initialPos);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Typex input plugboard. Based on a Rotor, because it allows arbitrary maps, not just switches
|
||||
* like the Enigma plugboard.
|
||||
* Not to be confused with the reflector plugboard.
|
||||
* This is also where the Typex's backwards input wiring is implemented - it's a bit of a hack, but
|
||||
* it means everything else continues to work like in the Enigma.
|
||||
*/
|
||||
export class Plugboard extends Enigma.Rotor {
|
||||
/**
|
||||
* Typex plugboard constructor.
|
||||
*
|
||||
* @param {string} wiring - 26 character string of mappings from A-Z, as per rotors, or "".
|
||||
*/
|
||||
constructor(wiring) {
|
||||
// Typex input wiring is backwards vs Enigma: that is, letters enter the rotors in a
|
||||
// clockwise order, vs. Enigma's anticlockwise (or vice versa depending on which side
|
||||
// you're looking at it from). I'm doing the transform here to avoid having to rewrite
|
||||
// the Engima crypt() method in Typex as well.
|
||||
// Note that the wiring for the reflector is the same way around as Enigma, so no
|
||||
// transformation is necessary on that side.
|
||||
// We're going to achieve this by mapping the plugboard settings through an additional
|
||||
// transform that mirrors the alphabet before we pass it to the superclass.
|
||||
if (!/^[A-Z]{26}$/.test(wiring)) {
|
||||
throw new OperationError("Plugboard wiring must be 26 unique uppercase letters");
|
||||
}
|
||||
const reversed = "AZYXWVUTSRQPONMLKJIHGFEDCB";
|
||||
wiring = wiring.replace(/./g, x => {
|
||||
return reversed[Enigma.a2i(x)];
|
||||
});
|
||||
try {
|
||||
super(wiring, "", "A", "A");
|
||||
} catch (err) {
|
||||
throw new OperationError(err.message.replace("Rotor", "Plugboard"));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Transform a character through this rotor forwards.
|
||||
*
|
||||
* @param {number} c - The character.
|
||||
* @returns {number}
|
||||
*/
|
||||
transform(c) {
|
||||
return Utils.mod(this.map[Utils.mod(c + this.pos, 26)] - this.pos, 26);
|
||||
}
|
||||
|
||||
/**
|
||||
* Transform a character through this rotor backwards.
|
||||
*
|
||||
* @param {number} c - The character.
|
||||
* @returns {number}
|
||||
*/
|
||||
revTransform(c) {
|
||||
return Utils.mod(this.revMap[Utils.mod(c + this.pos, 26)] - this.pos, 26);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue