mirror of
https://github.com/gchq/CyberChef.git
synced 2025-04-25 01:06:16 -04:00
Emulation of the WW2 SIGABA machine
I have created an emulation of the SIGABA machine and have tested it against some test data from a Master's thesis by Miao Ai: https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1237&context=etd_projects
This commit is contained in:
parent
616b38c6fb
commit
f007c093eb
2 changed files with 794 additions and 0 deletions
501
src/core/lib/SIGABA.mjs
Normal file
501
src/core/lib/SIGABA.mjs
Normal file
|
@ -0,0 +1,501 @@
|
|||
/**
|
||||
Emulation of the SIGABA machine
|
||||
|
||||
@author hettysymes
|
||||
*/
|
||||
|
||||
/**
|
||||
A set of randomised example SIGABA cipher/control rotors (these rotors are interchangeable). Cipher and control rotors can be referred to as C and R rotors respectively.
|
||||
*/
|
||||
|
||||
export const CR_ROTORS = [
|
||||
{name: "Example 1", value: "SRGWANHPJZFXVIDQCEUKBYOLMT"},
|
||||
{name: "Example 2", value: "THQEFSAZVKJYULBODCPXNIMWRG"},
|
||||
{name: "Example 3", value: "XDTUYLEVFNQZBPOGIRCSMHWKAJ"},
|
||||
{name: "Example 4", value: "LOHDMCWUPSTNGVXYFJREQIKBZA"},
|
||||
{name: "Example 5", value: "ERXWNZQIJYLVOFUMSGHTCKPBDA"},
|
||||
{name: "Example 6", value: "FQECYHJIOUMDZVPSLKRTGWXBAN"},
|
||||
{name: "Example 7", value: "TBYIUMKZDJSOPEWXVANHLCFQGR"},
|
||||
{name: "Example 8", value: "QZUPDTFNYIAOMLEBWJXCGHKRSV"},
|
||||
{name: "Example 9", value: "CZWNHEMPOVXLKRSIDGJFYBTQAU"},
|
||||
{name: "Example 10", value: "ENPXJVKYQBFZTICAGMOHWRLDUS"}
|
||||
];
|
||||
|
||||
/**
|
||||
A set of randomised example SIGABA index rotors (may be referred to as I rotors).
|
||||
*/
|
||||
|
||||
export const I_ROTORS = [
|
||||
{name: "Example 1", value: "6201348957"},
|
||||
{name: "Example 2", value: "6147253089"},
|
||||
{name: "Example 3", value: "8239647510"},
|
||||
{name: "Example 4", value: "7194835260"},
|
||||
{name: "Example 5", value: "4873205916"}
|
||||
];
|
||||
|
||||
export const NUMBERS = "0123456789".split("");
|
||||
|
||||
/**
|
||||
Converts a letter to uppercase (if it already isn't)
|
||||
|
||||
@param {char} letter - letter to convert to upper case
|
||||
@returns {char}
|
||||
*/
|
||||
export function convToUpperCase(letter){
|
||||
const charCode = letter.charCodeAt();
|
||||
if (97<=charCode && charCode<=122){
|
||||
return String.fromCharCode(charCode-32);
|
||||
}
|
||||
return letter;
|
||||
}
|
||||
|
||||
/**
|
||||
The SIGABA machine consisting of the 3 rotor banks: cipher, control and index banks.
|
||||
*/
|
||||
export class SigabaMachine{
|
||||
/**
|
||||
SigabaMachine constructor
|
||||
|
||||
@param {Object[]} cipherRotors - list of CRRotors
|
||||
@param {Object[]} controlRotors - list of CRRotors
|
||||
@param {object[]} indexRotors - list of IRotors
|
||||
*/
|
||||
constructor(cipherRotors, controlRotors, indexRotors){
|
||||
this.cipherBank = new CipherBank(cipherRotors);
|
||||
this.controlBank = new ControlBank(controlRotors);
|
||||
this.indexBank = new IndexBank(indexRotors);
|
||||
}
|
||||
|
||||
/**
|
||||
Steps all the correct rotors in the machine.
|
||||
*/
|
||||
step(){
|
||||
const controlOut = this.controlBank.goThroughControl();
|
||||
const indexOut = this.indexBank.goThroughIndex(controlOut);
|
||||
this.cipherBank.step(indexOut);
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypts a letter. A space is converted to a "Z" before encryption, and a "Z" is converted to an "X". This allows spaces to be encrypted.
|
||||
|
||||
@param {char} letter - letter to encrypt
|
||||
@returns {char}
|
||||
*/
|
||||
encryptLetter(letter){
|
||||
letter = convToUpperCase(letter);
|
||||
if (letter == " "){
|
||||
letter = "Z";
|
||||
}
|
||||
else if (letter == "Z") {
|
||||
letter = "X";
|
||||
}
|
||||
const encryptedLetter = this.cipherBank.encrypt(letter);
|
||||
this.step();
|
||||
return encryptedLetter;
|
||||
}
|
||||
|
||||
/**
|
||||
Decrypts a letter. A letter decrypted as a "Z" is converted to a space before it is output, since spaces are converted to "Z"s before encryption.
|
||||
|
||||
@param {char} letter - letter to decrypt
|
||||
@returns {char}
|
||||
*/
|
||||
decryptLetter(letter){
|
||||
letter = convToUpperCase(letter);
|
||||
let decryptedLetter = this.cipherBank.decrypt(letter);
|
||||
if (decryptedLetter == "Z"){
|
||||
decryptedLetter = " ";
|
||||
}
|
||||
this.step();
|
||||
return decryptedLetter;
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypts a message of one or more letters
|
||||
|
||||
@param {string} msg - message to encrypt
|
||||
@returns {string}
|
||||
*/
|
||||
encrypt(msg){
|
||||
let ciphertext = "";
|
||||
for (const letter of msg){
|
||||
ciphertext = ciphertext.concat(this.encryptLetter(letter));
|
||||
}
|
||||
return ciphertext;
|
||||
}
|
||||
|
||||
/**
|
||||
Decrypts a message of one or more letters
|
||||
|
||||
@param {string} msg - message to decrypt
|
||||
@returns {string}
|
||||
*/
|
||||
decrypt(msg){
|
||||
let plaintext = "";
|
||||
for (const letter of msg){
|
||||
plaintext = plaintext.concat(this.decryptLetter(letter));
|
||||
}
|
||||
return plaintext;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
The cipher rotor bank consists of 5 cipher rotors in either a forward or reversed orientation.
|
||||
*/
|
||||
export class CipherBank{
|
||||
/**
|
||||
CipherBank constructor
|
||||
|
||||
@param {Object[]} rotors - list of CRRotors
|
||||
*/
|
||||
constructor(rotors){
|
||||
this.rotors = rotors;
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypts a letter through the cipher rotors (signal goes from left-to-right)
|
||||
|
||||
@param {char} inputPos - the input position of the signal (letter to be encrypted)
|
||||
@returns {char}
|
||||
*/
|
||||
encrypt(inputPos){
|
||||
for (let rotor of this.rotors){
|
||||
inputPos = rotor.crypt(inputPos, "leftToRight");
|
||||
}
|
||||
return inputPos;
|
||||
}
|
||||
|
||||
/**
|
||||
Decrypts a letter through the cipher rotors (signal goes from right-to-left)
|
||||
|
||||
@param {char} inputPos - the input position of the signal (letter to be decrypted)
|
||||
@returns {char}
|
||||
*/
|
||||
decrypt(inputPos){
|
||||
const revOrderedRotors = [...this.rotors].reverse();
|
||||
for (let rotor of revOrderedRotors){
|
||||
inputPos = rotor.crypt(inputPos, "rightToLeft");
|
||||
}
|
||||
return inputPos;
|
||||
}
|
||||
|
||||
/**
|
||||
Step the cipher rotors forward according to the inputs from the index rotors
|
||||
|
||||
@param {number[]} indexInputs - the inputs from the index rotors
|
||||
*/
|
||||
step(indexInputs){
|
||||
const logicDict = {0: [0,9], 1:[7,8], 2:[5,6], 3:[3,4], 4:[1,2]};
|
||||
let rotorsToMove = [];
|
||||
for (const key in logicDict){
|
||||
const item = logicDict[key];
|
||||
for (const i of indexInputs){
|
||||
if (item.includes(i)){
|
||||
rotorsToMove.push(this.rotors[key]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (let rotor of rotorsToMove){
|
||||
rotor.step();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
The control rotor bank consists of 5 control rotors in either a forward or reversed orientation. Signals to the control rotor bank always go from right-to-left.
|
||||
*/
|
||||
export class ControlBank{
|
||||
/**
|
||||
ControlBank constructor. The rotors have been reversed as signals go from right-to-left through the control rotors.
|
||||
|
||||
@param {Object[]} rotors - list of CRRotors
|
||||
*/
|
||||
constructor(rotors){
|
||||
this.rotors = [...rotors].reverse();
|
||||
this.numberOfMoves = 1;
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypts a letter.
|
||||
|
||||
@param {char} inputPos - the input position of the signal
|
||||
@returns {char}
|
||||
*/
|
||||
crypt(inputPos){
|
||||
for (let rotor of this.rotors){
|
||||
inputPos = rotor.crypt(inputPos, "rightToLeft");
|
||||
}
|
||||
return inputPos;
|
||||
}
|
||||
|
||||
/**
|
||||
Gets the outputs of the control rotors. The inputs to the control rotors are always "F", "G", "H" and "I".
|
||||
|
||||
@returns {number[]}
|
||||
*/
|
||||
getOutputs(){
|
||||
const outputs = [this.crypt("F"), this.crypt("G"), this.crypt("H"), this.crypt("I")];
|
||||
const logicDict = {1:"B", 2:"C", 3:"DE", 4:"FGH", 5:"IJK", 6:"LMNO", 7:"PQRST", 8:"UVWXYZ", 9:"A"};
|
||||
let numberOutputs = [];
|
||||
for (let key in logicDict){
|
||||
const item = logicDict[key];
|
||||
for (let output of outputs){
|
||||
if (item.includes(output)){
|
||||
numberOutputs.push(key);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return numberOutputs;
|
||||
}
|
||||
|
||||
/**
|
||||
Steps the control rotors. Only 3 of the control rotors step: one after every encryption, one after every 26, and one after every 26 squared.
|
||||
*/
|
||||
step(){
|
||||
const MRotor = this.rotors[1], FRotor = this.rotors[2], SRotor = this.rotors[3];
|
||||
this.numberOfMoves ++;
|
||||
FRotor.step();
|
||||
if (this.numberOfMoves%26 == 0){
|
||||
MRotor.step();
|
||||
}
|
||||
if (this.numberOfMoves%(26*26) == 0){
|
||||
SRotor.step();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
The goThroughControl function combines getting the outputs from the control rotor bank and then stepping them.
|
||||
|
||||
@returns {number[]}
|
||||
*/
|
||||
goThroughControl(){
|
||||
const outputs = this.getOutputs();
|
||||
this.step();
|
||||
return outputs;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
The index rotor bank consists of 5 index rotors all placed in the forwards orientation.
|
||||
*/
|
||||
export class IndexBank{
|
||||
/**
|
||||
IndexBank constructor
|
||||
|
||||
@param {Object[]} rotors - list of IRotors
|
||||
*/
|
||||
constructor(rotors){
|
||||
this.rotors = rotors;
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypts a number.
|
||||
|
||||
@param {number} inputPos - the input position of the signal
|
||||
@returns {number}
|
||||
*/
|
||||
crypt(inputPos){
|
||||
for (let rotor of this.rotors){
|
||||
inputPos = rotor.crypt(inputPos);
|
||||
}
|
||||
return inputPos;
|
||||
}
|
||||
|
||||
/**
|
||||
The goThroughIndex function takes the inputs from the control rotor bank and returns the list of outputs after encryption through the index rotors.
|
||||
|
||||
@param {number[]} - inputs from the control rotors
|
||||
@returns {number[]}
|
||||
*/
|
||||
goThroughIndex(controlInputs){
|
||||
let outputs = [];
|
||||
for (const inp of controlInputs){
|
||||
outputs.push(this.crypt(inp));
|
||||
}
|
||||
return outputs;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
Rotor class
|
||||
*/
|
||||
export class Rotor{
|
||||
/**
|
||||
Rotor constructor
|
||||
|
||||
@param {number[]} wireSetting - the wirings within the rotor: mapping from left-to-right, the index of the number in the list maps onto the number at that index
|
||||
@param {bool} rev - true if the rotor is reversed, false if it isn't
|
||||
@param {number} key - the starting position or state of the rotor
|
||||
*/
|
||||
constructor(wireSetting, key, rev){
|
||||
this.state = key;
|
||||
this.numMapping = this.getNumMapping(wireSetting, rev);
|
||||
this.posMapping = this.getPosMapping(rev);
|
||||
}
|
||||
|
||||
/**
|
||||
Get the number mapping from the wireSetting (only different from wireSetting if rotor is reversed)
|
||||
|
||||
@param {number[]} wireSetting - the wirings within the rotors
|
||||
@param {bool} rev - true if reversed, false if not
|
||||
@returns {number[]}
|
||||
*/
|
||||
getNumMapping(wireSetting, rev){
|
||||
if (rev==false){
|
||||
return wireSetting;
|
||||
}
|
||||
else {
|
||||
const length = wireSetting.length;
|
||||
let tempMapping = new Array(length);
|
||||
for (let i=0; i<length; i++){
|
||||
tempMapping[wireSetting[i]] = i;
|
||||
}
|
||||
return tempMapping;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Get the position mapping (how the position numbers map onto the numbers of the rotor)
|
||||
|
||||
@param {bool} rev - true if reversed, false if not
|
||||
@returns {number[]}
|
||||
*/
|
||||
getPosMapping(rev){
|
||||
const length = this.numMapping.length;
|
||||
let posMapping = [];
|
||||
if (rev==false){
|
||||
for (let i=this.state; i<this.state+length; i++){
|
||||
let res = i%length;
|
||||
if (res<0){
|
||||
res += length;
|
||||
}
|
||||
posMapping.push(res);
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (let i=this.state; i>this.state-length; i--){
|
||||
let res = i%length;
|
||||
if (res<0){
|
||||
res += length;
|
||||
}
|
||||
posMapping.push(res);
|
||||
}
|
||||
}
|
||||
return posMapping;
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypt/decrypt data. This process is identical to the rotors of cipher machines such as Enigma or Typex.
|
||||
|
||||
@param {number} inputPos - the input position of the signal (the data to encrypt/decrypt)
|
||||
@param {string} direction - one of "leftToRight" and "rightToLeft", states the direction in which the signal passes through the rotor
|
||||
@returns {number}
|
||||
*/
|
||||
cryptNum(inputPos, direction){
|
||||
const inpNum = this.posMapping[inputPos];
|
||||
var outNum;
|
||||
if (direction == "leftToRight"){
|
||||
outNum = this.numMapping[inpNum];
|
||||
}
|
||||
else if (direction == "rightToLeft") {
|
||||
outNum = this.numMapping.indexOf(inpNum);
|
||||
}
|
||||
const outPos = this.posMapping.indexOf(outNum);
|
||||
return outPos;
|
||||
}
|
||||
|
||||
/**
|
||||
Steps the rotor. The number at position 0 will be moved to position 1 etc.
|
||||
*/
|
||||
step(){
|
||||
const lastNum = this.posMapping.pop();
|
||||
this.posMapping.splice(0, 0, lastNum);
|
||||
this.state = this.posMapping[0];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
A CRRotor is a cipher (C) or control (R) rotor. These rotors are identical and interchangeable. A C or R rotor consists of 26 contacts, one for each letter, and may be put into either a forwards of reversed orientation.
|
||||
*/
|
||||
export class CRRotor extends Rotor{
|
||||
|
||||
/**
|
||||
CRRotor constructor
|
||||
|
||||
@param {string} wireSetting - the rotor wirings (string of letters)
|
||||
@param {char} key - initial state of rotor
|
||||
@param {bool} rev - true if reversed, false if not
|
||||
*/
|
||||
constructor(wireSetting, key, rev=false){
|
||||
wireSetting = wireSetting.split("").map(CRRotor.letterToNum);
|
||||
super(wireSetting, CRRotor.letterToNum(key), rev);
|
||||
}
|
||||
|
||||
/**
|
||||
Static function which converts a letter into its number i.e. its offset from the letter "A"
|
||||
|
||||
@param {char} letter - letter to convert to number
|
||||
@returns {number}
|
||||
*/
|
||||
static letterToNum(letter){
|
||||
return letter.charCodeAt()-65;
|
||||
}
|
||||
|
||||
/**
|
||||
Static function which converts a number (a letter's offset from "A") into its letter
|
||||
|
||||
@param {number} num - number to convert to letter
|
||||
@returns {char}
|
||||
*/
|
||||
static numToLetter(num){
|
||||
return String.fromCharCode(num+65);
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypts/decrypts a letter.
|
||||
|
||||
@param {char} inputPos - the input position of the signal ("A" refers to position 0 etc.)
|
||||
@param {string} direction - one of "leftToRight" and "rightToLeft"
|
||||
@returns {char}
|
||||
*/
|
||||
crypt(inputPos, direction){
|
||||
inputPos = CRRotor.letterToNum(inputPos);
|
||||
const outPos = this.cryptNum(inputPos, direction);
|
||||
return CRRotor.numToLetter(outPos);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
An IRotor is an index rotor, which consists of 10 contacts each numbered from 0 to 9. Unlike C and R rotors, they cannot be put in the reversed orientation. The index rotors do not step at any point during encryption or decryption.
|
||||
*/
|
||||
export class IRotor extends Rotor{
|
||||
/**
|
||||
IRotor constructor
|
||||
|
||||
@param {string} wireSetting - the rotor wirings (string of numbers)
|
||||
@param {char} key - initial state of rotor
|
||||
*/
|
||||
constructor(wireSetting, key){
|
||||
wireSetting = wireSetting.split("").map(Number);
|
||||
super(wireSetting, Number(key), false);
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypts a number
|
||||
|
||||
@param {number} inputPos - the input position of the signal
|
||||
@returns {number}
|
||||
*/
|
||||
crypt(inputPos){
|
||||
return this.cryptNum(inputPos, "leftToRight");
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue