mirror of
https://github.com/gchq/CyberChef.git
synced 2025-04-21 07:16:17 -04:00
ESM: Ported MS and Entropy operations
This commit is contained in:
parent
ebcc5bd9c8
commit
84df055888
10 changed files with 705 additions and 189 deletions
96
src/core/operations/Entropy.mjs
Normal file
96
src/core/operations/Entropy.mjs
Normal file
|
@ -0,0 +1,96 @@
|
|||
/**
|
||||
* @author n1474335 [n1474335@gmail.com]
|
||||
* @copyright Crown Copyright 2016
|
||||
* @license Apache-2.0
|
||||
*/
|
||||
|
||||
import Operation from "../Operation";
|
||||
import Utils from "../Utils";
|
||||
|
||||
/**
|
||||
* Entropy operation
|
||||
*/
|
||||
class Entropy extends Operation {
|
||||
|
||||
/**
|
||||
* Entropy constructor
|
||||
*/
|
||||
constructor() {
|
||||
super();
|
||||
|
||||
this.name = "Entropy";
|
||||
this.module = "Default";
|
||||
this.description = "Calculates the Shannon entropy of the input data which gives an idea of its randomness. 8 is the maximum.";
|
||||
this.inputType = "byteArray";
|
||||
this.outputType = "number";
|
||||
this.presentType = "html";
|
||||
this.args = [];
|
||||
}
|
||||
|
||||
/**
|
||||
* @param {byteArray} input
|
||||
* @param {Object[]} args
|
||||
* @returns {number}
|
||||
*/
|
||||
run(input, args) {
|
||||
const prob = [],
|
||||
uniques = input.unique(),
|
||||
str = Utils.byteArrayToChars(input);
|
||||
let i;
|
||||
|
||||
for (i = 0; i < uniques.length; i++) {
|
||||
prob.push(str.count(Utils.chr(uniques[i])) / input.length);
|
||||
}
|
||||
|
||||
let entropy = 0,
|
||||
p;
|
||||
|
||||
for (i = 0; i < prob.length; i++) {
|
||||
p = prob[i];
|
||||
entropy += p * Math.log(p) / Math.log(2);
|
||||
}
|
||||
|
||||
return -entropy;
|
||||
}
|
||||
|
||||
/**
|
||||
* Displays the entropy as a scale bar for web apps.
|
||||
*
|
||||
* @param {number} entropy
|
||||
* @returns {html}
|
||||
*/
|
||||
present(entropy) {
|
||||
return `Shannon entropy: ${entropy}
|
||||
<br><canvas id='chart-area'></canvas><br>
|
||||
- 0 represents no randomness (i.e. all the bytes in the data have the same value) whereas 8, the maximum, represents a completely random string.
|
||||
- Standard English text usually falls somewhere between 3.5 and 5.
|
||||
- Properly encrypted or compressed data of a reasonable length should have an entropy of over 7.5.
|
||||
|
||||
The following results show the entropy of chunks of the input data. Chunks with particularly high entropy could suggest encrypted or compressed sections.
|
||||
|
||||
<br><script>
|
||||
var canvas = document.getElementById("chart-area"),
|
||||
parentRect = canvas.parentNode.getBoundingClientRect(),
|
||||
entropy = ${entropy},
|
||||
height = parentRect.height * 0.25;
|
||||
|
||||
canvas.width = parentRect.width * 0.95;
|
||||
canvas.height = height > 150 ? 150 : height;
|
||||
|
||||
CanvasComponents.drawScaleBar(canvas, entropy, 8, [
|
||||
{
|
||||
label: "English text",
|
||||
min: 3.5,
|
||||
max: 5
|
||||
},{
|
||||
label: "Encrypted/compressed",
|
||||
min: 7.5,
|
||||
max: 8
|
||||
}
|
||||
]);
|
||||
</script>`;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
export default Entropy;
|
Loading…
Add table
Add a link
Reference in a new issue