mirror of
https://github.com/gchq/CyberChef.git
synced 2025-04-20 14:56:19 -04:00
Initial migration to library; add decryption operation
This commit is contained in:
parent
a1cd6aaacb
commit
743d6da32c
4 changed files with 306 additions and 169 deletions
|
@ -190,7 +190,8 @@
|
|||
"Parse CSR",
|
||||
"Public Key from Certificate",
|
||||
"Public Key from Private Key",
|
||||
"SM2 Encrypt"
|
||||
"SM2 Encrypt",
|
||||
"SM2 Decrypt"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
232
src/core/lib/SM2.mjs
Normal file
232
src/core/lib/SM2.mjs
Normal file
|
@ -0,0 +1,232 @@
|
|||
/**
|
||||
* Utilities and operations utilized for SM2 encryption and decryption
|
||||
* @author flakjacket95 [dflack95@gmail.com]
|
||||
* @copyright Crown Copyright 2024
|
||||
* @license Apache-2.0
|
||||
*/
|
||||
|
||||
import { fromHex } from "../lib/Hex.mjs";
|
||||
import Utils from "../Utils.mjs";
|
||||
import Sm3 from "crypto-api/src/hasher/sm3.mjs";
|
||||
import {toHex} from "crypto-api/src/encoder/hex.mjs";
|
||||
import r from "jsrsasign";
|
||||
|
||||
export class SM2 {
|
||||
constructor(curve, format) {
|
||||
this.ecParams = null;
|
||||
this.rng = new r.SecureRandom();
|
||||
/*
|
||||
For any additional curve definitions utilized by SM2, add another block like the below for that curve, then add the curve name to the Curve selection dropdown
|
||||
*/
|
||||
r.crypto.ECParameterDB.regist(
|
||||
'sm2p256v1', // name / p = 2**256 - 2**224 - 2**96 + 2**64 - 1
|
||||
256,
|
||||
'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF', // p
|
||||
'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC', // a
|
||||
'28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93', // b
|
||||
'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123', // n
|
||||
'1', // h
|
||||
'32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7', // gx
|
||||
'BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0', // gy
|
||||
[]
|
||||
) // alias
|
||||
this.ecParams = r.crypto.ECParameterDB.getByName(curve);
|
||||
|
||||
this.format = format;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the public key coordinates for the SM2 class
|
||||
*
|
||||
* @param {string} publicKeyX
|
||||
* @param {string} publicKeyY
|
||||
*/
|
||||
setPublicKey(publicKeyX, publicKeyY) {
|
||||
console.log('Set public key')
|
||||
/*
|
||||
* TODO: This needs some additional length validation; and checking for errors in the decoding process
|
||||
* TODO: Can probably support other public key encoding methods here as well in the future
|
||||
*/
|
||||
this.publicKey = this.ecParams.curve.decodePointHex("04" + publicKeyX + publicKeyY);
|
||||
|
||||
if (this.publicKey.isInfinity()) {
|
||||
throw new OperationError("Invalid Public Key");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the private key value for the SM2 class
|
||||
*
|
||||
* @param {string} privateKey
|
||||
*/
|
||||
setPrivateKey(privateKey) {
|
||||
this.privateKey = null; //Somehow take hex input and translate back to a BigInteger???
|
||||
}
|
||||
|
||||
/**
|
||||
* Main encryption function; takes user input, processes encryption and returns the result in hex (with the components arranged as configured by the user args)
|
||||
*
|
||||
* @param {*} input
|
||||
* @returns {string}
|
||||
*/
|
||||
encrypt(input) {
|
||||
const G = this.ecParams.G
|
||||
|
||||
/*
|
||||
* Compute a new, random public key along the same elliptic curve to form the starting point for our encryption process (record the resulting X and Y as hex to provide as part of the operation output)
|
||||
* k: Randomly generated BigInteger
|
||||
* c1: Result of dotting our curve generator point `G` with the value of `k`
|
||||
*/
|
||||
var k = this.generatePublicKey();
|
||||
var c1 = G.multiply(k);
|
||||
const [hexC1X, hexC1Y] = this.getPointAsHex(c1);
|
||||
|
||||
/*
|
||||
* Compute p2 (secret) using the public key, and the chosen k value above
|
||||
*/
|
||||
const p2 = this.publicKey.multiply(k);
|
||||
|
||||
/*
|
||||
* Compute the C3 SM3 hash before we transform the array
|
||||
*/
|
||||
var c3 = this.c3(p2, input);
|
||||
|
||||
/*
|
||||
* Genreate a proper length encryption key, XOR iteratively, and convert newly encrypted data to hex
|
||||
*/
|
||||
var key = this.kdf(p2, input.byteLength);
|
||||
for (let i = 0; i < input.byteLength; i++) {
|
||||
input[i] ^= Utils.ord(key[i]);
|
||||
}
|
||||
var c2 = Buffer.from(input).toString('hex');
|
||||
|
||||
/*
|
||||
* Check user input specs; order the output components as selected
|
||||
*/
|
||||
if (this.format == "C1C3C2") {
|
||||
return hexC1X + hexC1Y + c3 + c2;
|
||||
} else {
|
||||
return hexC1X + hexC1Y + c2 + c3;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* Function to decrypt an SM2 encrypted message
|
||||
*
|
||||
* @param {*} input
|
||||
*/
|
||||
decrypt(input) {
|
||||
/*
|
||||
*
|
||||
*/
|
||||
var c1 = this.ecParams.curve.decodePointHex("04" + publicKeyX + publicKeyY);
|
||||
|
||||
/*
|
||||
* Compute the p2 (secret) value by taking the C1 point provided in the encrypted package, and multiplying by the private k value
|
||||
*/
|
||||
var p2 = c1.multiply(this.privateKey);
|
||||
|
||||
/*
|
||||
* Similar to encryption; compute sufficient length key material and XOR the input data to recover the original message
|
||||
*/
|
||||
var key = this.kdf(p2, input.byteLength);
|
||||
for (let i = 0; i < input.byteLength; i++) {
|
||||
input[i] ^= Utils.ord(key[i]);
|
||||
}
|
||||
console.log(input)
|
||||
//var dec = Buffer.from(input).toString('hex');
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Generates a large random number
|
||||
*
|
||||
* @param {*} limit
|
||||
* @returns
|
||||
*/
|
||||
getBigRandom(limit) {
|
||||
return new r.BigInteger(limit.bitLength(), this.rng)
|
||||
.mod(limit.subtract(r.BigInteger.ONE))
|
||||
.add(r.BigInteger.ONE);
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper function for generating a large random K number; utilized for generating our initial C1 point
|
||||
* TODO: Do we need to do any sort of validation on the resulting k values?
|
||||
*
|
||||
* @returns {BigInteger}
|
||||
*/
|
||||
generatePublicKey() {
|
||||
const n = this.ecParams.n;
|
||||
var k = this.getBigRandom(n);
|
||||
return k;
|
||||
}
|
||||
|
||||
/**
|
||||
* SM2 Key Derivation Function (KDF); Takes P2 point, and generates a key material stream large enough to encrypt all of the input data
|
||||
*
|
||||
* @param {*} p2
|
||||
* @param {*} len
|
||||
* @returns {string}
|
||||
*/
|
||||
kdf(p2, len) {
|
||||
const [hX, hY] = this.getPointAsHex(p2);
|
||||
|
||||
var total = Math.ceil(len / 32) + 1;
|
||||
var cnt = 1;
|
||||
|
||||
var keyMaterial = ""
|
||||
|
||||
while (cnt < total) {
|
||||
var num = Utils.intToByteArray(cnt, 4, "big");
|
||||
var overall = fromHex(hX).concat(fromHex(hY)).concat(num)
|
||||
keyMaterial += this.sm3(overall);
|
||||
cnt++;
|
||||
}
|
||||
return keyMaterial
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the C3 component of our final encrypted payload; which is the SM3 hash of the P2 point and the original, unencrypted input data
|
||||
*
|
||||
* @param {*} p2
|
||||
* @param {*} input
|
||||
* @returns {string}
|
||||
*/
|
||||
c3(p2, input) {
|
||||
const [hX, hY] = this.getPointAsHex(p2);
|
||||
|
||||
var overall = fromHex(hX).concat(Array.from(input)).concat(fromHex(hY));
|
||||
|
||||
return toHex(this.sm3(overall));
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* SM3 setup helper function; takes input data as an array, processes the hash and returns the result
|
||||
*
|
||||
* @param {*} data
|
||||
* @returns {string}
|
||||
*/
|
||||
sm3(data) {
|
||||
var hashData = Utils.arrayBufferToStr(Uint8Array.from(data).buffer, false);
|
||||
const hasher = new Sm3();
|
||||
hasher.update(hashData);
|
||||
return hasher.finalize();
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility function, returns an elliptic curve points X and Y values as hex;
|
||||
*
|
||||
* @param {EcPointFp} point
|
||||
* @returns {[]}
|
||||
*/
|
||||
getPointAsHex(point) {
|
||||
var biX = point.getX().toBigInteger();
|
||||
var biY = point.getY().toBigInteger();
|
||||
|
||||
var charlen = this.ecParams.keycharlen;
|
||||
var hX = ("0000000000" + biX.toString(16)).slice(- charlen);
|
||||
var hY = ("0000000000" + biY.toString(16)).slice(- charlen);
|
||||
return [hX, hY]
|
||||
}
|
||||
}
|
65
src/core/operations/SM2Decrypt.mjs
Normal file
65
src/core/operations/SM2Decrypt.mjs
Normal file
|
@ -0,0 +1,65 @@
|
|||
/**
|
||||
* @author flakjacket95 [dflack95@gmail.com]
|
||||
* @copyright Crown Copyright 2024
|
||||
* @license Apache-2.0
|
||||
*/
|
||||
|
||||
import Operation from "../Operation.mjs";
|
||||
import OperationError from "../errors/OperationError.mjs";
|
||||
|
||||
import { SM2 } from "../lib/SM2.mjs";
|
||||
|
||||
/**
|
||||
* SM2Decrypt operation
|
||||
*/
|
||||
class SM2Decrypt extends Operation {
|
||||
|
||||
/**
|
||||
* SM2Decrypt constructor
|
||||
*/
|
||||
constructor() {
|
||||
super();
|
||||
|
||||
this.name = "SM2 Decrypt";
|
||||
this.module = "Crypto";
|
||||
this.description = "Decrypts a message utilizing the SM2 standard";
|
||||
this.infoURL = ""; // Usually a Wikipedia link. Remember to remove localisation (i.e. https://wikipedia.org/etc rather than https://en.wikipedia.org/etc)
|
||||
this.inputType = "string";
|
||||
this.outputType = "ArrayBuffer";
|
||||
this.args = [
|
||||
{
|
||||
name: "Private Key",
|
||||
type: "string",
|
||||
value: "DEADBEEF"
|
||||
},
|
||||
{
|
||||
"name": "Input Format",
|
||||
"type": "option",
|
||||
"value": ["C1C3C2", "C1C2C3"]
|
||||
},
|
||||
{
|
||||
name: "Curve",
|
||||
type: "option",
|
||||
"value": ["sm2p256v1"]
|
||||
}
|
||||
];
|
||||
}
|
||||
|
||||
/**
|
||||
* @param {string} input
|
||||
* @param {Object[]} args
|
||||
* @returns {ArrayBuffer}
|
||||
*/
|
||||
run(input, args) {
|
||||
const [privateKey, inputFormat, curveName] = args;
|
||||
|
||||
var sm2 = new SM2(curveName, inputFormat);
|
||||
sm2.setPrivateKey(privateKey);
|
||||
|
||||
var result = sm2.decrypt(new Uint8Array(input))
|
||||
return result
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
export default SM2Decrypt;
|
|
@ -6,12 +6,13 @@
|
|||
|
||||
import Operation from "../Operation.mjs";
|
||||
import OperationError from "../errors/OperationError.mjs";
|
||||
|
||||
import { SM2 } from "../lib/SM2.mjs";
|
||||
|
||||
import { fromHex } from "../lib/Hex.mjs";
|
||||
import { toBase64 } from "../lib/Base64.mjs";
|
||||
import Utils from "../Utils.mjs";
|
||||
import Sm3 from "crypto-api/src/hasher/sm3.mjs";
|
||||
import {toHex} from "crypto-api/src/encoder/hex.mjs";
|
||||
//import { ECCurveFp } from "jsrsasign";
|
||||
import r from "jsrsasign";
|
||||
|
||||
/**
|
||||
|
@ -54,23 +55,6 @@ class SM2Encrypt extends Operation {
|
|||
"value": ["sm2p256v1"]
|
||||
}
|
||||
];
|
||||
this.ecParams = null;
|
||||
this.rng = new r.SecureRandom();
|
||||
/*
|
||||
For any additional curve definitions utilized by SM2, add another block like the below for that curve, then add the curve name to the Curve selection dropdown
|
||||
*/
|
||||
r.crypto.ECParameterDB.regist(
|
||||
'sm2p256v1', // name / p = 2**256 - 2**224 - 2**96 + 2**64 - 1
|
||||
256,
|
||||
'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF', // p
|
||||
'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC', // a
|
||||
'28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93', // b
|
||||
'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123', // n
|
||||
'1', // h
|
||||
'32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7', // gx
|
||||
'BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0', // gy
|
||||
[]
|
||||
) // alias
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -79,20 +63,13 @@ class SM2Encrypt extends Operation {
|
|||
* @returns {byteArray}
|
||||
*/
|
||||
run(input, args) {
|
||||
const [privateKeyX, privateKeyY, outputFormat, curveName] = args;
|
||||
const [publicKeyX, publicKeyY, outputFormat, curveName] = args;
|
||||
this.outputFormat = outputFormat;
|
||||
this.ecParams = r.crypto.ECParameterDB.getByName(curveName);
|
||||
/*
|
||||
* TODO: This needs some additional length validation; and checking for errors in the decoding process
|
||||
* TODO: Can probably support other public key encoding methods here as well in the future
|
||||
*/
|
||||
this.publicKey = this.ecParams.curve.decodePointHex("04" + privateKeyX + privateKeyY);
|
||||
|
||||
if (this.publicKey.isInfinity()) {
|
||||
throw new OperationError("Invalid Public Key");
|
||||
}
|
||||
var sm2 = new SM2(curveName, outputFormat);
|
||||
sm2.setPublicKey(publicKeyX, publicKeyY);
|
||||
|
||||
var result = this.encrypt(new Uint8Array(input))
|
||||
var result = sm2.encrypt(new Uint8Array(input))
|
||||
return result
|
||||
}
|
||||
|
||||
|
@ -116,144 +93,6 @@ class SM2Encrypt extends Operation {
|
|||
pos[0].end = Math.floor(pos[0].end + adjust + num);
|
||||
return pos;
|
||||
}
|
||||
|
||||
/**
|
||||
* Main encryption function; takes user input, processes encryption and returns the result in hex (with the components arranged as configured by the user args)
|
||||
*
|
||||
* @param {*} input
|
||||
* @returns {string}
|
||||
*/
|
||||
encrypt(input) {
|
||||
const G = this.ecParams.G
|
||||
|
||||
/*
|
||||
* Compute a new, random public key along the same elliptic curve to form the starting point for our encryption process (record the resulting X and Y as hex to provide as part of the operation output)
|
||||
* k: Randomly generated BigInteger
|
||||
* c1: Result of dotting our curve generator point `G` with the value of `k`
|
||||
*/
|
||||
var k = this.generatePublicKey();
|
||||
var c1 = G.multiply(k);
|
||||
const [hexC1X, hexC1Y] = this.getPointAsHex(c1);
|
||||
|
||||
const p2 = this.publicKey.multiply(k);
|
||||
|
||||
/*
|
||||
* Compute the C3 SM3 hash before we transform the array
|
||||
*/
|
||||
var c3 = this.c3(p2, input);
|
||||
|
||||
/*
|
||||
* Genreate a proper length encryption key, XOR iteratively, and convert newly encrypted data to hex
|
||||
*/
|
||||
var key = this.kdf(p2, input.byteLength);
|
||||
for (let i = 0; i < input.byteLength; i++) {
|
||||
input[i] ^= Utils.ord(key[i]);
|
||||
}
|
||||
var c2 = Buffer.from(input).toString('hex');
|
||||
|
||||
/*
|
||||
* Check user input specs; order the output components as selected
|
||||
*/
|
||||
if (this.outputFormat == "C1C3C2") {
|
||||
return hexC1X + hexC1Y + c3 + c2;
|
||||
} else {
|
||||
return hexC1X + hexC1Y + c2 + c3;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a large random number
|
||||
*
|
||||
* @param {*} limit
|
||||
* @returns
|
||||
*/
|
||||
getBigRandom(limit) {
|
||||
return new r.BigInteger(limit.bitLength(), this.rng)
|
||||
.mod(limit.subtract(r.BigInteger.ONE))
|
||||
.add(r.BigInteger.ONE);
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper function for generating a large random K number; utilized for generating our initial C1 point
|
||||
* TODO: Do we need to do any sort of validation on the resulting k values?
|
||||
*
|
||||
* @returns {BigInteger}
|
||||
*/
|
||||
generatePublicKey() {
|
||||
const n = this.ecParams.n;
|
||||
var k = this.getBigRandom(n);
|
||||
return k;
|
||||
}
|
||||
|
||||
/**
|
||||
* SM2 Key Derivation Function (KDF); Takes P2 point, and generates a key material stream large enough to encrypt all of the input data
|
||||
*
|
||||
* @param {*} p2
|
||||
* @param {*} len
|
||||
* @returns {string}
|
||||
*/
|
||||
kdf(p2, len) {
|
||||
const [hX, hY] = this.getPointAsHex(p2);
|
||||
|
||||
var total = Math.ceil(len / 32) + 1;
|
||||
var cnt = 1;
|
||||
|
||||
var keyMaterial = ""
|
||||
|
||||
while (cnt < total) {
|
||||
var num = Utils.intToByteArray(cnt, 4, "big");
|
||||
var overall = fromHex(hX).concat(fromHex(hY)).concat(num)
|
||||
keyMaterial += this.sm3(overall);
|
||||
cnt++;
|
||||
}
|
||||
return keyMaterial
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the C3 component of our final encrypted payload; which is the SM3 hash of the P2 point and the original, unencrypted input data
|
||||
*
|
||||
* @param {*} p2
|
||||
* @param {*} input
|
||||
* @returns {string}
|
||||
*/
|
||||
c3(p2, input) {
|
||||
const [hX, hY] = this.getPointAsHex(p2);
|
||||
|
||||
var overall = fromHex(hX).concat(Array.from(input)).concat(fromHex(hY));
|
||||
|
||||
return toHex(this.sm3(overall));
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* SM3 setup helper function; takes input data as an array, processes the hash and returns the result
|
||||
*
|
||||
* @param {*} data
|
||||
* @returns {string}
|
||||
*/
|
||||
sm3(data) {
|
||||
var hashData = Utils.arrayBufferToStr(Uint8Array.from(data).buffer, false);
|
||||
const hasher = new Sm3();
|
||||
hasher.update(hashData);
|
||||
return hasher.finalize();
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility function, returns an elliptic curve points X and Y values as hex;
|
||||
*
|
||||
* @param {EcPointFp} point
|
||||
* @returns {[]}
|
||||
*/
|
||||
getPointAsHex(point) {
|
||||
var biX = point.getX().toBigInteger();
|
||||
var biY = point.getY().toBigInteger();
|
||||
|
||||
var charlen = this.ecParams.keycharlen;
|
||||
var hX = ("0000000000" + biX.toString(16)).slice(- charlen);
|
||||
var hY = ("0000000000" + biY.toString(16)).slice(- charlen);
|
||||
return [hX, hY]
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
export default SM2Encrypt;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue