Merge branch 'feature/bombe' into feature/typex

This commit is contained in:
s2224834 2019-02-28 17:00:33 +00:00
commit 2be642e4c9
61 changed files with 4621 additions and 635 deletions

756
src/core/lib/Bombe.mjs Normal file
View file

@ -0,0 +1,756 @@
/**
* Emulation of the Bombe machine.
*
* @author s2224834
* @author The National Museum of Computing - Bombe Rebuild Project
* @copyright Crown Copyright 2019
* @license Apache-2.0
*/
import OperationError from "../errors/OperationError";
import Utils from "../Utils";
import {Rotor, Plugboard, a2i, i2a} from "./Enigma";
/**
* Convenience/optimisation subclass of Rotor
*
* This allows creating multiple Rotors which share backing maps, to avoid repeatedly parsing the
* rotor spec strings and duplicating the maps in memory.
*/
class CopyRotor extends Rotor {
/**
* Return a copy of this Rotor.
* @returns {Object}
*/
copy() {
const clone = {
map: this.map,
revMap: this.revMap,
pos: this.pos,
step: this.step,
transform: this.transform,
revTransform: this.revTransform,
};
return clone;
}
}
/**
* Node in the menu graph
*
* A node represents a cipher/plaintext letter.
*/
class Node {
/**
* Node constructor.
* @param {number} letter - The plain/ciphertext letter this node represents (as a number).
*/
constructor(letter) {
this.letter = letter;
this.edges = new Set();
this.visited = false;
}
}
/**
* Edge in the menu graph
*
* An edge represents an Enigma machine transformation between two letters.
*/
class Edge {
/**
* Edge constructor - an Enigma machine mapping between letters
* @param {number} pos - The rotor position, relative to the beginning of the crib, at this edge
* @param {number} node1 - Letter at one end (as a number)
* @param {number} node2 - Letter at the other end
*/
constructor(pos, node1, node2) {
this.pos = pos;
this.node1 = node1;
this.node2 = node2;
node1.edges.add(this);
node2.edges.add(this);
this.visited = false;
}
/**
* Given the node at one end of this edge, return the other end.
* @param node {number} - The node we have
* @returns {number}
*/
getOther(node) {
return this.node1 === node ? this.node2 : this.node1;
}
}
/**
* As all the Bombe's rotors move in step, at any given point the vast majority of the scramblers
* in the machine share the majority of their state, which is hosted in this class.
*/
class SharedScrambler {
/**
* SharedScrambler constructor.
* @param {Object[]} rotors - List of rotors in the shared state _only_.
* @param {Object} reflector - The reflector in use.
*/
constructor(rotors, reflector) {
this.lowerCache = new Array(26);
this.higherCache = new Array(26);
for (let i=0; i<26; i++) {
this.higherCache[i] = new Array(26);
}
this.changeRotors(rotors, reflector);
}
/**
* Replace the rotors and reflector in this SharedScrambler.
* This takes care of flushing caches as well.
* @param {Object[]} rotors - List of rotors in the shared state _only_.
* @param {Object} reflector - The reflector in use.
*/
changeRotors(rotors, reflector) {
this.reflector = reflector;
this.rotors = rotors;
this.rotorsRev = [].concat(rotors).reverse();
this.cacheGen();
}
/**
* Step the rotors forward.
* @param {number} n - How many rotors to step. This includes the rotors which are not part of
* the shared state, so should be 2 or more.
*/
step(n) {
for (let i=0; i<n-1; i++) {
this.rotors[i].step();
}
this.cacheGen();
}
/**
* Optimisation: We pregenerate all routes through the machine with the top rotor removed,
* as these rarely change. This saves a lot of lookups. This function generates this route
* table.
* We also just-in-time cache the full routes through the scramblers, because after stepping
* the fast rotor some scramblers will be in states occupied by other scrambles on previous
* iterations.
*/
cacheGen() {
for (let i=0; i<26; i++) {
this.lowerCache[i] = undefined;
for (let j=0; j<26; j++) {
this.higherCache[i][j] = undefined;
}
}
for (let i=0; i<26; i++) {
if (this.lowerCache[i] !== undefined) {
continue;
}
let letter = i;
for (const rotor of this.rotors) {
letter = rotor.transform(letter);
}
letter = this.reflector.transform(letter);
for (const rotor of this.rotorsRev) {
letter = rotor.revTransform(letter);
}
// By symmetry
this.lowerCache[i] = letter;
this.lowerCache[letter] = i;
}
}
/**
* Map a letter through this (partial) scrambler.
* @param {number} i - The letter
* @returns {number}
*/
transform(i) {
return this.lowerCache[i];
}
}
/**
* Scrambler.
*
* This is effectively just an Enigma machine, but it only operates on one character at a time and
* the stepping mechanism is different.
*/
class Scrambler {
/** Scrambler constructor.
* @param {Object} base - The SharedScrambler whose state this scrambler uses
* @param {Object} rotor - The non-shared fast rotor in this scrambler
* @param {number} pos - Position offset from start of crib
* @param {number} end1 - Letter in menu this scrambler is attached to
* @param {number} end2 - Other letter in menu this scrambler is attached to
*/
constructor(base, rotor, pos, end1, end2) {
this.baseScrambler = base;
this.initialPos = pos;
this.changeRotor(rotor);
this.end1 = end1;
this.end2 = end2;
// For efficiency reasons, we pull the relevant shared cache from the baseScrambler into
// this object - this saves us a few pointer dereferences
this.cache = this.baseScrambler.higherCache[pos];
}
/**
* Replace the rotor in this scrambler.
* The position is reset automatically.
* @param {Object} rotor - New rotor
*/
changeRotor(rotor) {
this.rotor = rotor;
this.rotor.pos += this.initialPos;
}
/**
* Step the rotor forward.
*
* The base SharedScrambler needs to be instructed to step separately.
*/
step() {
// The Bombe steps the slowest rotor on an actual Enigma fastest, for reasons.
// ...but for optimisation reasons I'm going to cheat and not do that, as this vastly
// simplifies caching the state of the majority of the scramblers. The results are the
// same, just in a slightly different order.
this.rotor.step();
this.cache = this.baseScrambler.higherCache[this.rotor.pos];
}
/**
* Run a letter through the scrambler.
* @param {number} i - The letter to transform (as a number)
* @returns {number}
*/
transform(i) {
let letter = i;
const cached = this.cache[i];
if (cached !== undefined) {
return cached;
}
letter = this.rotor.transform(letter);
letter = this.baseScrambler.transform(letter);
letter = this.rotor.revTransform(letter);
this.cache[i] = letter;
this.cache[letter] = i;
return letter;
}
/**
* Given one letter in the menu this scrambler maps to, return the other.
* @param end {number} - The node we have
* @returns {number}
*/
getOtherEnd(end) {
return this.end1 === end ? this.end2 : this.end1;
}
/**
* Read the position this scrambler is set to.
* Note that because of Enigma's stepping, you need to set an actual Enigma to the previous
* position in order to get it to make a certain set of electrical connections when a button
* is pressed - this function *does* take this into account.
* However, as with the rest of the Bombe, it does not take stepping into account - the middle
* and slow rotors are treated as static.
* @return {string}
*/
getPos() {
let result = "";
// Roll back the fast rotor by one step
let pos = Utils.mod(this.rotor.pos - 1, 26);
result += i2a(pos);
for (let i=0; i<this.baseScrambler.rotors.length; i++) {
pos = this.baseScrambler.rotors[i].pos;
result += i2a(pos);
}
return result.split("").reverse().join("");
}
}
/**
* Bombe simulator class.
*/
export class BombeMachine {
/**
* Construct a Bombe.
*
* Note that there is no handling of offsets here: the crib specified must exactly match the
* ciphertext. It will check that the crib is sane (length is vaguely sensible and there's no
* matching characters between crib and ciphertext) but cannot check further - if it's wrong
* your results will be wrong!
*
* There is also no handling of rotor stepping - if the target Enigma stepped in the middle of
* your crib, you're out of luck. TODO: Allow specifying a step point - this is fairly easy to
* configure on a real Bombe, but we're not clear on whether it was ever actually done for
* real (there would almost certainly have been better ways of attacking in most situations
* than attempting to exhaust options for the stepping point, but in some circumstances, e.g.
* via Banburismus, the stepping point might have been known).
*
* @param {string[]} rotors - list of rotor spec strings (without step points!)
* @param {Object} reflector - Reflector object
* @param {string} ciphertext - The ciphertext to attack
* @param {string} crib - Known plaintext for this ciphertext
* @param {boolean} check - Whether to use the checking machine
* @param {function} update - Function to call to send status updates (optional)
*/
constructor(rotors, reflector, ciphertext, crib, check, update=undefined) {
if (ciphertext.length < crib.length) {
throw new OperationError("Crib overruns supplied ciphertext");
}
if (crib.length < 2) {
// This is the absolute bare minimum to be sane, and even then it's likely too short to
// be useful
throw new OperationError("Crib is too short");
}
if (crib.length > 25) {
// A crib longer than this will definitely cause the middle rotor to step somewhere
// A shorter crib is preferable to reduce this chance, of course
throw new OperationError("Crib is too long");
}
for (let i=0; i<crib.length; i++) {
if (ciphertext[i] === crib[i]) {
throw new OperationError(`Invalid crib: character ${ciphertext[i]} at pos ${i} in both ciphertext and crib`);
}
}
this.ciphertext = ciphertext;
this.crib = crib;
this.initRotors(rotors);
this.check = check;
this.updateFn = update;
const [mostConnected, edges] = this.makeMenu();
// This is the bundle of wires corresponding to the 26 letters within each of the 26
// possible nodes in the menu
this.wires = new Array(26*26);
// These are the pseudo-Engima devices corresponding to each edge in the menu, and the
// nodes in the menu they each connect to
this.scramblers = new Array();
for (let i=0; i<26; i++) {
this.scramblers.push(new Array());
}
this.sharedScrambler = new SharedScrambler(this.baseRotors.slice(1), reflector);
this.allScramblers = new Array();
this.indicator = undefined;
for (const edge of edges) {
const cRotor = this.baseRotors[0].copy();
const end1 = a2i(edge.node1.letter);
const end2 = a2i(edge.node2.letter);
const scrambler = new Scrambler(this.sharedScrambler, cRotor, edge.pos, end1, end2);
if (edge.pos === 0) {
this.indicator = scrambler;
}
this.scramblers[end1].push(scrambler);
this.scramblers[end2].push(scrambler);
this.allScramblers.push(scrambler);
}
// The Bombe uses a set of rotors to keep track of what settings it's testing. We cheat and
// use one of the actual scramblers if there's one in the right position, but if not we'll
// just create one.
if (this.indicator === undefined) {
this.indicator = new Scrambler(this.sharedScrambler, this.baseRotors[0].copy(), 0, undefined, undefined);
this.allScramblers.push(this.indicator);
}
this.testRegister = a2i(mostConnected.letter);
// This is an arbitrary letter other than the most connected letter
for (const edge of mostConnected.edges) {
this.testInput = [this.testRegister, a2i(edge.getOther(mostConnected).letter)];
break;
}
}
/**
* Build Rotor objects from list of rotor wiring strings.
* @param {string[]} rotors - List of rotor wiring strings
*/
initRotors(rotors) {
// This is ordered from the Enigma fast rotor to the slow, so bottom to top for the Bombe
this.baseRotors = [];
for (const rstr of rotors) {
const rotor = new CopyRotor(rstr, "", "A", "A");
this.baseRotors.push(rotor);
}
}
/**
* Replace the rotors and reflector in all components of this Bombe.
* @param {string[]} rotors - List of rotor wiring strings
* @param {Object} reflector - Reflector object
*/
changeRotors(rotors, reflector) {
// At the end of the run, the rotors are all back in the same position they started
this.initRotors(rotors);
this.sharedScrambler.changeRotors(this.baseRotors.slice(1), reflector);
for (const scrambler of this.allScramblers) {
scrambler.changeRotor(this.baseRotors[0].copy());
}
}
/**
* If we have a way of sending status messages, do so.
* @param {...*} msg - Message to send.
*/
update(...msg) {
if (this.updateFn !== undefined) {
this.updateFn(...msg);
}
}
/**
* Recursive depth-first search on the menu graph.
* This is used to a) isolate unconnected sub-graphs, and b) count the number of loops in each
* of those graphs.
* @param {Object} node - Node object to start the search from
* @returns {[number, number, Object, number, Object[]} - loop count, node count, most connected
* node, order of most connected node, list of edges in this sub-graph
*/
dfs(node) {
let loops = 0;
let nNodes = 1;
let mostConnected = node;
let nConnections = mostConnected.edges.size;
let edges = new Set();
node.visited = true;
for (const edge of node.edges) {
if (edge.visited) {
// Already been here from the other end.
continue;
}
edge.visited = true;
edges.add(edge);
const other = edge.getOther(node);
if (other.visited) {
// We have a loop, record that and continue
loops += 1;
continue;
}
// This is a newly visited node
const [oLoops, oNNodes, oMostConnected, oNConnections, oEdges] = this.dfs(other);
loops += oLoops;
nNodes += oNNodes;
edges = new Set([...edges, ...oEdges]);
if (oNConnections > nConnections) {
mostConnected = oMostConnected;
nConnections = oNConnections;
}
}
return [loops, nNodes, mostConnected, nConnections, edges];
}
/**
* Build a menu from the ciphertext and crib.
* A menu is just a graph where letters in either the ciphertext or crib (Enigma is symmetric,
* so there's no difference mathematically) are nodes and states of the Enigma machine itself
* are the edges.
* Additionally, we want a single connected graph, and of the subgraphs available, we want the
* one with the most loops (since these generate feedback cycles which efficiently close off
* disallowed states).
* Finally, we want to identify the most connected node in that graph (as it's the best choice
* of measurement point).
* @returns [Object, Object[]] - the most connected node, and the list of edges in the subgraph
*/
makeMenu() {
// First, we make a graph of all of the mappings given by the crib
// Make all nodes first
const nodes = new Map();
for (const c of this.ciphertext + this.crib) {
if (!nodes.has(c)) {
const node = new Node(c);
nodes.set(c, node);
}
}
// Then all edges
for (let i=0; i<this.crib.length; i++) {
const a = this.crib[i];
const b = this.ciphertext[i];
new Edge(i, nodes.get(a), nodes.get(b));
}
// list of [loop_count, node_count, most_connected_node, connections_on_most_connected, edges]
const graphs = [];
// Then, for each unconnected subgraph, we count the number of loops and nodes
for (const start of nodes.keys()) {
if (nodes.get(start).visited) {
continue;
}
const subgraph = this.dfs(nodes.get(start));
graphs.push(subgraph);
}
// Return the subgraph with the most loops (ties broken by node count)
graphs.sort((a, b) => {
let result = b[0] - a[0];
if (result === 0) {
result = b[1] - a[1];
}
return result;
});
this.nLoops = graphs[0][0];
return [graphs[0][2], graphs[0][4]];
}
/**
* Bombe electrical simulation. Energise a wire. For all connected wires (both via the diagonal
* board and via the scramblers), energise them too, recursively.
* @param {number} i - Bombe wire bundle
* @param {number} j - Bombe stecker hypothesis wire within bundle
*/
energise(i, j) {
const idx = 26*i + j;
if (this.wires[idx]) {
return;
}
this.wires[idx] = true;
// Welchman's diagonal board: if A steckers to B, that implies B steckers to A. Handle
// both.
const idxPair = 26*j + i;
this.wires[idxPair] = true;
if (i === this.testRegister || j === this.testRegister) {
this.energiseCount++;
if (this.energiseCount === 26) {
// no point continuing, bail out
return;
}
}
for (let k=0; k<this.scramblers[i].length; k++) {
const scrambler = this.scramblers[i][k];
const out = scrambler.transform(j);
const other = scrambler.getOtherEnd(i);
// Lift the pre-check before the call, to save some function call overhead
const otherIdx = 26*other + out;
if (!this.wires[otherIdx]) {
this.energise(other, out);
if (this.energiseCount === 26) {
return;
}
}
}
if (i === j) {
return;
}
for (let k=0; k<this.scramblers[j].length; k++) {
const scrambler = this.scramblers[j][k];
const out = scrambler.transform(i);
const other = scrambler.getOtherEnd(j);
const otherIdx = 26*other + out;
if (!this.wires[otherIdx]) {
this.energise(other, out);
if (this.energiseCount === 26) {
return;
}
}
}
}
/**
* Trial decryption at the current setting.
* Used after we get a stop.
* This applies the detected stecker pair if we have one. It does not handle the other
* steckering or stepping (which is why we limit it to 26 characters, since it's guaranteed to
* be wrong after that anyway).
* @param {string} stecker - Known stecker spec string.
* @returns {string}
*/
tryDecrypt(stecker) {
const fastRotor = this.indicator.rotor;
const initialPos = fastRotor.pos;
const res = [];
const plugboard = new Plugboard(stecker);
// The indicator scrambler starts in the right place for the beginning of the ciphertext.
for (let i=0; i<Math.min(26, this.ciphertext.length); i++) {
const t = this.indicator.transform(plugboard.transform(a2i(this.ciphertext[i])));
res.push(i2a(plugboard.transform(t)));
this.indicator.step(1);
}
fastRotor.pos = initialPos;
return res.join("");
}
/**
* Format a steckered pair, in sorted order to allow uniquing.
* @param {number} a - A letter
* @param {number} b - Its stecker pair
* @returns {string}
*/
formatPair(a, b) {
if (a < b) {
return `${i2a(a)}${i2a(b)}`;
}
return `${i2a(b)}${i2a(a)}`;
}
/**
* The checking machine was used to manually verify Bombe stops. Using a device which was
* effectively a non-stepping Enigma, the user would walk through each of the links in the
* menu at the rotor positions determined by the Bombe. By starting with the stecker pair the
* Bombe gives us, we find the stecker pair of each connected letter in the graph, and so on.
* If a contradiction is reached, the stop is invalid. If not, we have most (but not
* necessarily all) of the plugboard connections.
* You will notice that this procedure is exactly the same as what the Bombe itself does, only
* we start with an assumed good hypothesis and read out the stecker pair for every letter.
* On the real hardware that wasn't practical, but fortunately we're not the real hardware, so
* we don't need to implement the manual checking machine procedure.
* @param {number} pair - The stecker pair of the test register.
* @returns {string} - The empty string for invalid stops, or a plugboard configuration string
* containing all known pairs.
*/
checkingMachine(pair) {
if (pair !== this.testInput[1]) {
// We have a new hypothesis for this stop - apply the new one.
// De-energise the board
for (let i=0; i<this.wires.length; i++) {
this.wires[i] = false;
}
this.energiseCount = 0;
// Re-energise with the corrected hypothesis
this.energise(this.testRegister, pair);
}
const results = new Set();
results.add(this.formatPair(this.testRegister, pair));
for (let i=0; i<26; i++) {
let count = 0;
let other;
for (let j=0; j<26; j++) {
if (this.wires[i*26 + j]) {
count++;
other = j;
}
}
if (count > 1) {
// This is an invalid stop.
return "";
} else if (count === 0) {
// No information about steckering from this wire
continue;
}
results.add(this.formatPair(i, other));
}
return [...results].join(" ");
}
/**
* Check to see if the Bombe has stopped. If so, process the stop.
* @returns {(undefined|string[3])} - Undefined for no stop, or [rotor settings, plugboard settings, decryption preview]
*/
checkStop() {
// Count the energised outputs
const count = this.energiseCount;
if (count === 26) {
return undefined;
}
// If it's not all of them, we have a stop
let steckerPair;
// The Bombe tells us one stecker pair as well. The input wire and test register we
// started with are hypothesised to be a stecker pair.
if (count === 25) {
// Our steckering hypothesis is wrong. Correct value is the un-energised wire.
for (let j=0; j<26; j++) {
if (!this.wires[26*this.testRegister + j]) {
steckerPair = j;
break;
}
}
} else if (count === 1) {
// This means our hypothesis for the steckering is correct.
steckerPair = this.testInput[1];
} else {
// This was known as a "boxing stop" - we have a stop but not a single hypothesis.
// If this happens a lot it implies the menu isn't good enough.
// If we have the checking machine enabled, we're going to just check each wire in
// turn. If we get 0 or 1 hit, great.
// If we get multiple hits, or the checking machine is off, the user will just have to
// deal with it.
if (!this.check) {
// We can't draw any conclusions about the steckering (one could maybe suggest
// options in some cases, but too hard to present clearly).
return [this.indicator.getPos(), "??", this.tryDecrypt("")];
}
let stecker = undefined;
for (let i = 0; i < 26; i++) {
const newStecker = this.checkingMachine(i);
if (newStecker !== "") {
if (stecker !== undefined) {
// Multiple hypotheses can't be ruled out.
return [this.indicator.getPos(), "??", this.tryDecrypt("")];
}
stecker = newStecker;
}
}
if (stecker === undefined) {
// Checking machine ruled all possibilities out.
return undefined;
}
// If we got here, there was just one possibility allowed by the checking machine. Success.
return [this.indicator.getPos(), stecker, this.tryDecrypt(stecker)];
}
let stecker;
if (this.check) {
stecker = this.checkingMachine(steckerPair);
if (stecker === "") {
// Invalid stop - don't count it, don't return it
return undefined;
}
} else {
stecker = `${i2a(this.testRegister)}${i2a(steckerPair)}`;
}
const testDecrypt = this.tryDecrypt(stecker);
return [this.indicator.getPos(), stecker, testDecrypt];
}
/**
* Having set up the Bombe, do the actual attack run. This tries every possible rotor setting
* and attempts to logically invalidate them. If it can't, it's added to the list of candidate
* solutions.
* @returns {string[][3]} - list of 3-tuples of candidate rotor setting, plugboard settings, and decryption preview
*/
run() {
let stops = 0;
const result = [];
// For each possible rotor setting
const nChecks = Math.pow(26, this.baseRotors.length);
for (let i=1; i<=nChecks; i++) {
// Benchmarking suggests this is faster than using .fill()
for (let i=0; i<this.wires.length; i++) {
this.wires[i] = false;
}
this.energiseCount = 0;
// Energise the test input, follow the current through each scrambler
// (and the diagonal board)
this.energise(...this.testInput);
const stop = this.checkStop();
if (stop !== undefined) {
stops++;
result.push(stop);
}
// Step all the scramblers
// This loop counts how many rotors have reached their starting position (meaning the
// next one needs to step as well)
let n = 1;
for (let j=1; j<this.baseRotors.length; j++) {
if ((i % Math.pow(26, j)) === 0) {
n++;
} else {
break;
}
}
if (n > 1) {
this.sharedScrambler.step(n);
}
for (const scrambler of this.allScramblers) {
scrambler.step();
}
// Send status messages at what seems to be a reasonably sensible frequency
// (note this won't be triggered on 3-rotor runs - they run fast enough it doesn't seem necessary)
if (n > 3) {
this.update(this.nLoops, stops, i/nChecks);
}
}
return result;
}
}

View file

@ -0,0 +1,655 @@
/**
* Co-ordinate conversion resources.
*
* @author j433866 [j433866@gmail.com]
* @copyright Crown Copyright 2019
* @license Apache-2.0
*/
import geohash from "ngeohash";
import geodesy from "geodesy";
import OperationError from "../errors/OperationError";
/**
* Co-ordinate formats
*/
export const FORMATS = [
"Degrees Minutes Seconds",
"Degrees Decimal Minutes",
"Decimal Degrees",
"Geohash",
"Military Grid Reference System",
"Ordnance Survey National Grid",
"Universal Transverse Mercator"
];
/**
* Formats that should be passed to the conversion module as-is
*/
const NO_CHANGE = [
"Geohash",
"Military Grid Reference System",
"Ordnance Survey National Grid",
"Universal Transverse Mercator",
];
/**
* Convert a given latitude and longitude into a different format.
*
* @param {string} input - Input string to be converted
* @param {string} inFormat - Format of the input coordinates
* @param {string} inDelim - The delimiter splitting the lat/long of the input
* @param {string} outFormat - Format to convert to
* @param {string} outDelim - The delimiter to separate the output with
* @param {string} includeDir - Whether or not to include the compass direction in the output
* @param {number} precision - Precision of the result
* @returns {string} A formatted string of the converted co-ordinates
*/
export function convertCoordinates (input, inFormat, inDelim, outFormat, outDelim, includeDir, precision) {
let isPair = false,
split,
latlon,
convLat,
convLon,
conv,
hash,
utm,
mgrs,
osng,
splitLat,
splitLong,
lat,
lon;
// Can't have a precision less than 0!
if (precision < 0) {
precision = 0;
}
if (inDelim === "Auto") {
// Try to detect a delimiter in the input.
inDelim = findDelim(input);
if (inDelim === null) {
throw new OperationError("Unable to detect the input delimiter automatically.");
}
} else if (!inDelim.includes("Direction")) {
// Convert the delimiter argument value to the actual character
inDelim = realDelim(inDelim);
}
if (inFormat === "Auto") {
// Try to detect the format of the input data
inFormat = findFormat(input, inDelim);
if (inFormat === null) {
throw new OperationError("Unable to detect the input format automatically.");
}
}
// Convert the output delimiter argument to the real character
outDelim = realDelim(outDelim);
if (!NO_CHANGE.includes(inFormat)) {
if (inDelim.includes("Direction")) {
// Split on directions
split = input.split(/[NnEeSsWw]/g);
if (split[0] === "") {
// Remove first element if direction preceding
split = split.slice(1);
}
} else {
split = input.split(inDelim);
}
// Replace any co-ordinate symbols with spaces so we can split on them later
for (let i = 0; i < split.length; i++) {
split[i] = split[i].replace(/[°˝´'"]/g, " ");
}
if (split.length > 1) {
isPair = true;
}
} else {
// Remove any delimiters from the input
input = input.replace(inDelim, "");
isPair = true;
}
// Conversions from the input format into a geodesy latlon object
switch (inFormat) {
case "Geohash":
hash = geohash.decode(input.replace(/[^A-Za-z0-9]/g, ""));
latlon = new geodesy.LatLonEllipsoidal(hash.latitude, hash.longitude);
break;
case "Military Grid Reference System":
utm = geodesy.Mgrs.parse(input.replace(/[^A-Za-z0-9]/g, "")).toUtm();
latlon = utm.toLatLonE();
break;
case "Ordnance Survey National Grid":
osng = geodesy.OsGridRef.parse(input.replace(/[^A-Za-z0-9]/g, ""));
latlon = geodesy.OsGridRef.osGridToLatLon(osng);
break;
case "Universal Transverse Mercator":
// Geodesy needs a space between the first 2 digits and the next letter
if (/^[\d]{2}[A-Za-z]/.test(input)) {
input = input.slice(0, 2) + " " + input.slice(2);
}
utm = geodesy.Utm.parse(input);
latlon = utm.toLatLonE();
break;
case "Degrees Minutes Seconds":
if (isPair) {
// Split up the lat/long into degrees / minutes / seconds values
splitLat = splitInput(split[0]);
splitLong = splitInput(split[1]);
if (splitLat.length >= 3 && splitLong.length >= 3) {
lat = convDMSToDD(splitLat[0], splitLat[1], splitLat[2], 10);
lon = convDMSToDD(splitLong[0], splitLong[1], splitLong[2], 10);
latlon = new geodesy.LatLonEllipsoidal(lat.degrees, lon.degrees);
} else {
throw new OperationError("Invalid co-ordinate format for Degrees Minutes Seconds");
}
} else {
// Not a pair, so only try to convert one set of co-ordinates
splitLat = splitInput(split[0]);
if (splitLat.length >= 3) {
lat = convDMSToDD(splitLat[0], splitLat[1], splitLat[2]);
latlon = new geodesy.LatLonEllipsoidal(lat.degrees, lat.degrees);
} else {
throw new OperationError("Invalid co-ordinate format for Degrees Minutes Seconds");
}
}
break;
case "Degrees Decimal Minutes":
if (isPair) {
splitLat = splitInput(split[0]);
splitLong = splitInput(split[1]);
if (splitLat.length !== 2 || splitLong.length !== 2) {
throw new OperationError("Invalid co-ordinate format for Degrees Decimal Minutes.");
}
// Convert to decimal degrees, and then convert to a geodesy object
lat = convDDMToDD(splitLat[0], splitLat[1], 10);
lon = convDDMToDD(splitLong[0], splitLong[1], 10);
latlon = new geodesy.LatLonEllipsoidal(lat.degrees, lon.degrees);
} else {
// Not a pair, so only try to convert one set of co-ordinates
splitLat = splitInput(input);
if (splitLat.length !== 2) {
throw new OperationError("Invalid co-ordinate format for Degrees Decimal Minutes.");
}
lat = convDDMToDD(splitLat[0], splitLat[1], 10);
latlon = new geodesy.LatLonEllipsoidal(lat.degrees, lat.degrees);
}
break;
case "Decimal Degrees":
if (isPair) {
splitLat = splitInput(split[0]);
splitLong = splitInput(split[1]);
if (splitLat.length !== 1 || splitLong.length !== 1) {
throw new OperationError("Invalid co-ordinate format for Decimal Degrees.");
}
latlon = new geodesy.LatLonEllipsoidal(splitLat[0], splitLong[0]);
} else {
// Not a pair, so only try to convert one set of co-ordinates
splitLat = splitInput(split[0]);
if (splitLat.length !== 1) {
throw new OperationError("Invalid co-ordinate format for Decimal Degrees.");
}
latlon = new geodesy.LatLonEllipsoidal(splitLat[0], splitLat[0]);
}
break;
default:
throw new OperationError(`Unknown input format '${inFormat}'`);
}
// Everything is now a geodesy latlon object
// These store the latitude and longitude as decimal
if (inFormat.includes("Degrees")) {
// If the input string contains directions, we need to check if they're S or W.
// If either of the directions are, we should make the decimal value negative
const dirs = input.toUpperCase().match(/[NESW]/g);
if (dirs && dirs.length >= 1) {
// Make positive lat/lon values with S/W directions into negative values
if (dirs[0] === "S" || dirs[0] === "W" && latlon.lat > 0) {
latlon.lat = -latlon.lat;
}
if (dirs.length >= 2) {
if (dirs[1] === "S" || dirs[1] === "W" && latlon.lon > 0) {
latlon.lon = -latlon.lon;
}
}
}
}
// Try to find the compass directions of the lat and long
const [latDir, longDir] = findDirs(latlon.lat + "," + latlon.lon, ",");
// Output conversions for each output format
switch (outFormat) {
case "Decimal Degrees":
// We could use the built in latlon.toString(),
// but this makes adjusting the output harder
lat = convDDToDD(latlon.lat, precision);
lon = convDDToDD(latlon.lon, precision);
convLat = lat.string;
convLon = lon.string;
break;
case "Degrees Decimal Minutes":
lat = convDDToDDM(latlon.lat, precision);
lon = convDDToDDM(latlon.lon, precision);
convLat = lat.string;
convLon = lon.string;
break;
case "Degrees Minutes Seconds":
lat = convDDToDMS(latlon.lat, precision);
lon = convDDToDMS(latlon.lon, precision);
convLat = lat.string;
convLon = lon.string;
break;
case "Geohash":
convLat = geohash.encode(latlon.lat, latlon.lon, precision);
break;
case "Military Grid Reference System":
utm = latlon.toUtm();
mgrs = utm.toMgrs();
// MGRS wants a precision that's an even number between 2 and 10
if (precision % 2 !== 0) {
precision = precision + 1;
}
if (precision > 10) {
precision = 10;
}
convLat = mgrs.toString(precision);
break;
case "Ordnance Survey National Grid":
osng = geodesy.OsGridRef.latLonToOsGrid(latlon);
if (osng.toString() === "") {
throw new OperationError("Could not convert co-ordinates to OS National Grid. Are the co-ordinates in range?");
}
// OSNG wants a precision that's an even number between 2 and 10
if (precision % 2 !== 0) {
precision = precision + 1;
}
if (precision > 10) {
precision = 10;
}
convLat = osng.toString(precision);
break;
case "Universal Transverse Mercator":
utm = latlon.toUtm();
convLat = utm.toString(precision);
break;
}
if (convLat === undefined) {
throw new OperationError("Error converting co-ordinates.");
}
if (outFormat.includes("Degrees")) {
// Format DD/DDM/DMS for output
// If we're outputting a compass direction, remove the negative sign
if (latDir === "S" && includeDir !== "None") {
convLat = convLat.replace("-", "");
}
if (longDir === "W" && includeDir !== "None") {
convLon = convLon.replace("-", "");
}
let outConv = "";
if (includeDir === "Before") {
outConv += latDir + " ";
}
outConv += convLat;
if (includeDir === "After") {
outConv += " " + latDir;
}
outConv += outDelim;
if (isPair) {
if (includeDir === "Before") {
outConv += longDir + " ";
}
outConv += convLon;
if (includeDir === "After") {
outConv += " " + longDir;
}
outConv += outDelim;
}
conv = outConv;
} else {
conv = convLat + outDelim;
}
return conv;
}
/**
* Split up the input using a space or degrees signs, and sanitise the result
*
* @param {string} input - The input data to be split
* @returns {number[]} An array of the different items in the string, stored as floats
*/
function splitInput (input){
const split = [];
input.split(/\s+/).forEach(item => {
// Remove any character that isn't a digit, decimal point or negative sign
item = item.replace(/[^0-9.-]/g, "");
if (item.length > 0){
// Turn the item into a float
split.push(parseFloat(item));
}
});
return split;
}
/**
* Convert Degrees Minutes Seconds to Decimal Degrees
*
* @param {number} degrees - The degrees of the input co-ordinates
* @param {number} minutes - The minutes of the input co-ordinates
* @param {number} seconds - The seconds of the input co-ordinates
* @param {number} precision - The precision the result should be rounded to
* @returns {{string: string, degrees: number}} An object containing the raw converted value (obj.degrees), and a formatted string version (obj.string)
*/
function convDMSToDD (degrees, minutes, seconds, precision){
const absDegrees = Math.abs(degrees);
let conv = absDegrees + (minutes / 60) + (seconds / 3600);
let outString = round(conv, precision) + "°";
if (isNegativeZero(degrees) || degrees < 0) {
conv = -conv;
outString = "-" + outString;
}
return {
"degrees": conv,
"string": outString
};
}
/**
* Convert Decimal Degrees Minutes to Decimal Degrees
*
* @param {number} degrees - The input degrees to be converted
* @param {number} minutes - The input minutes to be converted
* @param {number} precision - The precision which the result should be rounded to
* @returns {{string: string, degrees: number}} An object containing the raw converted value (obj.degrees), and a formatted string version (obj.string)
*/
function convDDMToDD (degrees, minutes, precision) {
const absDegrees = Math.abs(degrees);
let conv = absDegrees + minutes / 60;
let outString = round(conv, precision) + "°";
if (isNegativeZero(degrees) || degrees < 0) {
conv = -conv;
outString = "-" + outString;
}
return {
"degrees": conv,
"string": outString
};
}
/**
* Convert Decimal Degrees to Decimal Degrees
*
* Doesn't affect the input, just puts it into an object
* @param {number} degrees - The input degrees to be converted
* @param {number} precision - The precision which the result should be rounded to
* @returns {{string: string, degrees: number}} An object containing the raw converted value (obj.degrees), and a formatted string version (obj.string)
*/
function convDDToDD (degrees, precision) {
return {
"degrees": degrees,
"string": round(degrees, precision) + "°"
};
}
/**
* Convert Decimal Degrees to Degrees Minutes Seconds
*
* @param {number} decDegrees - The input data to be converted
* @param {number} precision - The precision which the result should be rounded to
* @returns {{string: string, degrees: number, minutes: number, seconds: number}} An object containing the raw converted value as separate numbers (.degrees, .minutes, .seconds), and a formatted string version (obj.string)
*/
function convDDToDMS (decDegrees, precision) {
const absDegrees = Math.abs(decDegrees);
let degrees = Math.floor(absDegrees);
const minutes = Math.floor(60 * (absDegrees - degrees)),
seconds = round(3600 * (absDegrees - degrees) - 60 * minutes, precision);
let outString = degrees + "° " + minutes + "' " + seconds + "\"";
if (isNegativeZero(decDegrees) || decDegrees < 0) {
degrees = -degrees;
outString = "-" + outString;
}
return {
"degrees": degrees,
"minutes": minutes,
"seconds": seconds,
"string": outString
};
}
/**
* Convert Decimal Degrees to Degrees Decimal Minutes
*
* @param {number} decDegrees - The input degrees to be converted
* @param {number} precision - The precision the input data should be rounded to
* @returns {{string: string, degrees: number, minutes: number}} An object containing the raw converted value as separate numbers (.degrees, .minutes), and a formatted string version (obj.string)
*/
function convDDToDDM (decDegrees, precision) {
const absDegrees = Math.abs(decDegrees);
let degrees = Math.floor(absDegrees);
const minutes = absDegrees - degrees,
decMinutes = round(minutes * 60, precision);
let outString = degrees + "° " + decMinutes + "'";
if (decDegrees < 0 || isNegativeZero(decDegrees)) {
degrees = -degrees;
outString = "-" + outString;
}
return {
"degrees": degrees,
"minutes": decMinutes,
"string": outString,
};
}
/**
* Finds and returns the compass directions in an input string
*
* @param {string} input - The input co-ordinates containing the direction
* @param {string} delim - The delimiter separating latitide and longitude
* @returns {string[]} String array containing the latitude and longitude directions
*/
export function findDirs(input, delim) {
const upperInput = input.toUpperCase();
const dirExp = new RegExp(/[NESW]/g);
const dirs = upperInput.match(dirExp);
if (dirs) {
// If there's actually compass directions
// in the input, use these to work out the direction
if (dirs.length <= 2 && dirs.length >= 1) {
return dirs.length === 2 ? [dirs[0], dirs[1]] : [dirs[0], ""];
}
}
// Nothing was returned, so guess the directions
let lat = upperInput,
long,
latDir = "",
longDir = "";
if (!delim.includes("Direction")) {
if (upperInput.includes(delim)) {
const split = upperInput.split(delim);
if (split.length >= 1) {
if (split[0] !== "") {
lat = split[0];
}
if (split.length >= 2 && split[1] !== "") {
long = split[1];
}
}
}
} else {
const split = upperInput.split(dirExp);
if (split.length > 1) {
lat = split[0] === "" ? split[1] : split[0];
if (split.length > 2 && split[2] !== "") {
long = split[2];
}
}
}
if (lat) {
lat = parseFloat(lat);
latDir = lat < 0 ? "S" : "N";
}
if (long) {
long = parseFloat(long);
longDir = long < 0 ? "W" : "E";
}
return [latDir, longDir];
}
/**
* Detects the co-ordinate format of the input data
*
* @param {string} input - The input data whose format we need to detect
* @param {string} delim - The delimiter separating the data in input
* @returns {string} The input format
*/
export function findFormat (input, delim) {
let testData;
const mgrsPattern = new RegExp(/^[0-9]{2}\s?[C-HJ-NP-X]{1}\s?[A-HJ-NP-Z][A-HJ-NP-V]\s?[0-9\s]+/),
osngPattern = new RegExp(/^[A-HJ-Z]{2}\s+[0-9\s]+$/),
geohashPattern = new RegExp(/^[0123456789BCDEFGHJKMNPQRSTUVWXYZ]+$/),
utmPattern = new RegExp(/^[0-9]{2}\s?[C-HJ-NP-X]\s[0-9.]+\s?[0-9.]+$/),
degPattern = new RegExp(/[°'"]/g);
input = input.trim();
if (delim !== null && delim.includes("Direction")) {
const split = input.split(/[NnEeSsWw]/);
if (split.length > 1) {
testData = split[0] === "" ? split[1] : split[0];
}
} else if (delim !== null && delim !== "") {
if (input.includes(delim)) {
const split = input.split(delim);
if (split.length > 1) {
testData = split[0] === "" ? split[1] : split[0];
}
} else {
testData = input;
}
}
// Test non-degrees formats
if (!degPattern.test(input)) {
const filteredInput = input.toUpperCase().replace(delim, "");
if (utmPattern.test(filteredInput)) {
return "Universal Transverse Mercator";
}
if (mgrsPattern.test(filteredInput)) {
return "Military Grid Reference System";
}
if (osngPattern.test(filteredInput)) {
return "Ordnance Survey National Grid";
}
if (geohashPattern.test(filteredInput)) {
return "Geohash";
}
}
// Test DMS/DDM/DD formats
if (testData !== undefined) {
const split = splitInput(testData);
switch (split.length){
case 3:
return "Degrees Minutes Seconds";
case 2:
return "Degrees Decimal Minutes";
case 1:
return "Decimal Degrees";
}
}
return null;
}
/**
* Automatically find the delimeter type from the given input
*
* @param {string} input
* @returns {string} Delimiter type
*/
export function findDelim (input) {
input = input.trim();
const delims = [",", ";", ":"];
const testDir = input.match(/[NnEeSsWw]/g);
if (testDir !== null && testDir.length > 0 && testDir.length < 3) {
// Possibly contains a direction
const splitInput = input.split(/[NnEeSsWw]/);
if (splitInput.length <= 3 && splitInput.length > 0) {
// If there's 3 splits (one should be empty), then assume we have directions
if (splitInput[0] === "") {
return "Direction Preceding";
} else if (splitInput[splitInput.length - 1] === "") {
return "Direction Following";
}
}
}
// Loop through the standard delimiters, and try to find them in the input
for (let i = 0; i < delims.length; i++) {
const delim = delims[i];
if (input.includes(delim)) {
const splitInput = input.split(delim);
if (splitInput.length <= 3 && splitInput.length > 0) {
// Don't want to try and convert more than 2 co-ordinates
return delim;
}
}
}
return null;
}
/**
* Gets the real string for a delimiter name.
*
* @param {string} delim The delimiter to be matched
* @returns {string}
*/
export function realDelim (delim) {
return {
"Auto": "Auto",
"Space": " ",
"\\n": "\n",
"Comma": ",",
"Semi-colon": ";",
"Colon": ":"
}[delim];
}
/**
* Returns true if a zero is negative
*
* @param {number} zero
* @returns {boolean}
*/
function isNegativeZero(zero) {
return zero === 0 && (1/zero < 0);
}
/**
* Rounds a number to a specified number of decimal places
*
* @param {number} input - The number to be rounded
* @param {precision} precision - The number of decimal places the number should be rounded to
* @returns {number}
*/
function round(input, precision) {
precision = Math.pow(10, precision);
return Math.round(input * precision) / precision;
}

View file

@ -22,14 +22,13 @@ export const ROTORS = [
{name: "VI", value: "JPGVOUMFYQBENHZRDKASXLICTW<AN"},
{name: "VII", value: "NZJHGRCXMYSWBOUFAIVLPEKQDT<AN"},
{name: "VIII", value: "FKQHTLXOCBJSPDZRAMEWNIUYGV<AN"},
];
export const ROTORS_FOURTH = [
{name: "Beta", value: "LEYJVCNIXWPBQMDRTAKZGFUHOS"},
{name: "Gamma", value: "FSOKANUERHMBTIYCWLQPZXVGJD"},
];
export const ROTORS_OPTIONAL = [].concat(ROTORS).concat([
{name: "None", value: ""},
]);
/**
* Provided default Enigma reflector set.
* These are specified as 13 space-separated transposed pairs covering every letter.
@ -103,15 +102,17 @@ export class Rotor {
if (!/^[A-Z]$/.test(initialPosition)) {
throw new OperationError("Rotor initial position must be exactly one uppercase letter");
}
this.map = {};
this.revMap = {};
this.map = new Array(26);
this.revMap = new Array(26);
const uniq = {};
for (let i=0; i<LETTERS.length; i++) {
const a = a2i(LETTERS[i]);
const b = a2i(wiring[i]);
this.map[a] = b;
this.revMap[b] = a;
uniq[b] = true;
}
if (Object.keys(this.revMap).length !== LETTERS.length) {
if (Object.keys(uniq).length !== LETTERS.length) {
throw new OperationError("Rotor wiring must have each letter exactly once");
}
const rs = a2i(ringSetting);
@ -169,6 +170,7 @@ class PairMapBase {
constructor(pairs, name="PairMapBase") {
// I've chosen to make whitespace significant here to make a) code and
// b) inputs easier to read
this.pairs = pairs;
this.map = {};
if (pairs === "") {
return;
@ -179,7 +181,8 @@ class PairMapBase {
}
const a = a2i(pair[0]), b = a2i(pair[1]);
if (a === b) {
throw new OperationError(`${name}: cannot connect ${pair[0]} to itself`);
// self-stecker
return;
}
if (this.map.hasOwnProperty(a)) {
throw new OperationError(`${name} connects ${pair[0]} more than once`);
@ -219,6 +222,8 @@ class PairMapBase {
/**
* Reflector. PairMapBase but requires that all characters are accounted for.
*
* Includes a couple of optimisations on that basis.
*/
export class Reflector extends PairMapBase {
/**
@ -231,6 +236,21 @@ export class Reflector extends PairMapBase {
if (s !== 26) {
throw new OperationError("Reflector must have exactly 13 pairs covering every letter");
}
const optMap = new Array(26);
for (const x of Object.keys(this.map)) {
optMap[x] = this.map[x];
}
this.map = optMap;
}
/**
* Transform a character through this object.
*
* @param {number} c - The character.
* @returns {number}
*/
transform(c) {
return this.map[c];
}
}

230
src/core/lib/LoremIpsum.mjs Normal file
View file

@ -0,0 +1,230 @@
/**
* Lorem Ipsum generator.
*
* @author Klaxon [klaxon@veyr.com]
* @copyright Crown Copyright 2018
* @license Apache-2.0
*/
/**
* Generate lorem ipsum paragraphs.
*
* @param {number} length
* @returns {string}
*/
export function GenerateParagraphs(length=3) {
const paragraphs = [];
while (paragraphs.length < length) {
const paragraphLength = getRandomLength(PARAGRAPH_LENGTH_MEAN, PARAGRAPH_LENGTH_STD_DEV);
const sentences = [];
while (sentences.length < paragraphLength) {
const sentenceLength = getRandomLength(SENTENCE_LENGTH_MEAN, SENTENCE_LENGTH_STD_DEV);
const sentence = getWords(sentenceLength);
sentences.push(formatSentence(sentence));
}
paragraphs.push(formatParagraph(sentences));
}
paragraphs[paragraphs.length-1] = paragraphs[paragraphs.length-1].slice(0, -2);
paragraphs[0] = replaceStart(paragraphs[0]);
return paragraphs.join("");
}
/**
* Generate lorem ipsum sentences.
*
* @param {number} length
* @returns {string}
*/
export function GenerateSentences(length=3) {
const sentences = [];
while (sentences.length < length) {
const sentenceLength = getRandomLength(SENTENCE_LENGTH_MEAN, SENTENCE_LENGTH_STD_DEV);
const sentence = getWords(sentenceLength);
sentences.push(formatSentence(sentence));
}
const paragraphs = sentencesToParagraphs(sentences);
return paragraphs.join("");
}
/**
* Generate lorem ipsum words.
*
* @param {number} length
* @returns {string}
*/
export function GenerateWords(length=3) {
const words = getWords(length);
const sentences = wordsToSentences(words);
const paragraphs = sentencesToParagraphs(sentences);
return paragraphs.join("");
}
/**
* Generate lorem ipsum bytes.
*
* @param {number} length
* @returns {string}
*/
export function GenerateBytes(length=3) {
const str = GenerateWords(length/3);
return str.slice(0, length);
}
/**
* Get array of randomly selected words from the lorem ipsum wordList.
*
* @param {number} length
* @returns {string[]}
* @private
*/
function getWords(length=3) {
const words = [];
let word;
let previousWord;
while (words.length < length){
do {
word = wordList[Math.floor(Math.random() * wordList.length)];
} while (previousWord === word);
words.push(word);
previousWord = word;
}
return words;
}
/**
* Convert an array of words into an array of sentences
*
* @param {string[]} words
* @returns {string[]}
* @private
*/
function wordsToSentences(words) {
const sentences = [];
while (words.length > 0) {
const sentenceLength = getRandomLength(SENTENCE_LENGTH_MEAN, SENTENCE_LENGTH_STD_DEV);
if (sentenceLength <= words.length) {
sentences.push(formatSentence(words.splice(0, sentenceLength)));
} else {
sentences.push(formatSentence(words.splice(0, words.length)));
}
}
return sentences;
}
/**
* Convert an array of sentences into an array of paragraphs
*
* @param {string[]} sentences
* @returns {string[]}
* @private
*/
function sentencesToParagraphs(sentences) {
const paragraphs = [];
while (sentences.length > 0) {
const paragraphLength = getRandomLength(PARAGRAPH_LENGTH_MEAN, PARAGRAPH_LENGTH_STD_DEV);
paragraphs.push(formatParagraph(sentences.splice(0, paragraphLength)));
}
paragraphs[paragraphs.length-1] = paragraphs[paragraphs.length-1].slice(0, -1);
paragraphs[0] = replaceStart(paragraphs[0]);
return paragraphs;
}
/**
* Format an array of words into a sentence.
*
* @param {string[]} words
* @returns {string}
* @private
*/
function formatSentence(words) {
// 0.35 chance of a comma being added randomly to the sentence.
if (Math.random() < PROBABILITY_OF_A_COMMA) {
const pos = Math.round(Math.random()*(words.length-1));
words[pos] +=",";
}
let sentence = words.join(" ");
sentence = sentence.charAt(0).toUpperCase() + sentence.slice(1);
sentence += ".";
return sentence;
}
/**
* Format an array of sentences into a paragraph.
*
* @param {string[]} sentences
* @returns {string}
* @private
*/
function formatParagraph(sentences) {
let paragraph = sentences.join(" ");
paragraph += "\n\n";
return paragraph;
}
/**
* Get a random number based on a mean and standard deviation.
*
* @param {number} mean
* @param {number} stdDev
* @returns {number}
* @private
*/
function getRandomLength(mean, stdDev) {
let length;
do {
length = Math.round((Math.random()*2-1)+(Math.random()*2-1)+(Math.random()*2-1)*stdDev+mean);
} while (length <= 0);
return length;
}
/**
* Replace first 5 words with "Lorem ipsum dolor sit amet"
*
* @param {string[]} str
* @returns {string[]}
* @private
*/
function replaceStart(str) {
let words = str.split(" ");
if (words.length > 5) {
words.splice(0, 5, "Lorem", "ipsum", "dolor", "sit", "amet");
return words.join(" ");
} else {
const lorem = ["Lorem", "ipsum", "dolor", "sit", "amet"];
words = lorem.slice(0, words.length);
str = words.join(" ");
str += ".";
return str;
}
}
const SENTENCE_LENGTH_MEAN = 15;
const SENTENCE_LENGTH_STD_DEV = 9;
const PARAGRAPH_LENGTH_MEAN = 5;
const PARAGRAPH_LENGTH_STD_DEV = 2;
const PROBABILITY_OF_A_COMMA = 0.35;
const wordList = [
"ad", "adipisicing", "aliqua", "aliquip", "amet", "anim",
"aute", "cillum", "commodo", "consectetur", "consequat", "culpa",
"cupidatat", "deserunt", "do", "dolor", "dolore", "duis",
"ea", "eiusmod", "elit", "enim", "esse", "est",
"et", "eu", "ex", "excepteur", "exercitation", "fugiat",
"id", "in", "incididunt", "ipsum", "irure", "labore",
"laboris", "laborum", "Lorem", "magna", "minim", "mollit",
"nisi", "non", "nostrud", "nulla", "occaecat", "officia",
"pariatur", "proident", "qui", "quis", "reprehenderit", "sint",
"sit", "sunt", "tempor", "ullamco", "ut", "velit",
"veniam", "voluptate",
];