Making the tokenizer in to a library.

This commit is contained in:
Glenn R. Martin 2025-06-03 21:17:53 -04:00
parent 233eb3d452
commit 0df7ac0bad
2 changed files with 197 additions and 43 deletions

View file

@ -0,0 +1,191 @@
// noinspection SpellCheckingInspection
/**
* @author grmartin [grmartin@engineer.com]
* @copyright Crown Copyright 2016
* @license Apache-2.0
*/
/**
* Convert an imported module in to a solid type
* @param m an imported module
* @returns {TokenizerModule}
*/
const exportModule = (m) => {
return {
countTokens: m.countTokens, // # of tokens
encode: m.encode, // tokens
decode: m.decode, // token ids
};
};
export const defaultValue = Symbol("*");
// Tokenizer module constants
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const GPT_35_TURBO_TOKENIZER = () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const TEXT_EMBEDDING_ADA_002_TOKENIZER = () => import("gpt-tokenizer/model/text-embedding-ada-002").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const TEXT_EMBEDDING_3_LARGE_TOKENIZER = () => import("gpt-tokenizer/model/text-embedding-3-large").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const TEXT_EMBEDDING_3_SMALL_TOKENIZER = () => import("gpt-tokenizer/model/text-embedding-3-small").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const CODE_DAVINCI_002_TOKENIZER = () => import("gpt-tokenizer/model/code-davinci-002").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const CODE_CUSHMAN_002_TOKENIZER = () => import("gpt-tokenizer/model/code-cushman-002").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const TEXT_DAVINCI_002_TOKENIZER = () => import("gpt-tokenizer/model/text-davinci-002").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const TEXT_DAVINCI_003_TOKENIZER = () => import("gpt-tokenizer/model/text-davinci-003").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const TEXT_DAVINCI_EDIT_001_TOKENIZER = () => import("gpt-tokenizer/model/text-davinci-edit-001").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const CODE_DAVINCI_EDIT_001_TOKENIZER = () => import("gpt-tokenizer/model/code-davinci-edit-001").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const DAVINCI_TOKENIZER = () => import("gpt-tokenizer/model/davinci").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const CURIE_TOKENIZER = () => import("gpt-tokenizer/model/curie").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const BABBAGE_TOKENIZER = () => import("gpt-tokenizer/model/babbage").then(m => exportModule(m));
/**
* @returns {Promise<TokenizerModule>}
* @constructor
*/
const ADA_TOKENIZER = () => import("gpt-tokenizer/model/ada").then(m => exportModule(m));
// This mapping returns a Promise that resolves to the correct countTokens function for the model.
export const MODEL_TO_MODULES = {
// cl100k_base models
[defaultValue]: GPT_35_TURBO_TOKENIZER,
"gpt-4": GPT_35_TURBO_TOKENIZER,
"gpt-4-32k": GPT_35_TURBO_TOKENIZER,
"gpt-4-turbo": GPT_35_TURBO_TOKENIZER,
"gpt-4o": GPT_35_TURBO_TOKENIZER,
"gpt-4-0125-preview": GPT_35_TURBO_TOKENIZER,
"gpt-4-1106-preview": GPT_35_TURBO_TOKENIZER,
"gpt-3.5-turbo": GPT_35_TURBO_TOKENIZER,
"gpt-3.5-turbo-16k": GPT_35_TURBO_TOKENIZER,
"gpt-3.5-turbo-instruct": GPT_35_TURBO_TOKENIZER,
"gpt-3.5-turbo-0125": GPT_35_TURBO_TOKENIZER,
"gpt-3.5-turbo-1106": GPT_35_TURBO_TOKENIZER,
"text-embedding-ada-002": TEXT_EMBEDDING_ADA_002_TOKENIZER,
"text-embedding-3-large": TEXT_EMBEDDING_3_LARGE_TOKENIZER,
"text-embedding-3-small": TEXT_EMBEDDING_3_SMALL_TOKENIZER,
// p50k_base models
"code-davinci-002": CODE_DAVINCI_002_TOKENIZER,
"code-davinci-001": CODE_DAVINCI_002_TOKENIZER,
"code-cushman-002": CODE_CUSHMAN_002_TOKENIZER,
"code-cushman-001": CODE_CUSHMAN_002_TOKENIZER,
"text-davinci-002": TEXT_DAVINCI_002_TOKENIZER,
"text-davinci-003": TEXT_DAVINCI_003_TOKENIZER,
// p50k_edit models
"text-davinci-edit-001": TEXT_DAVINCI_EDIT_001_TOKENIZER,
"code-davinci-edit-001": CODE_DAVINCI_EDIT_001_TOKENIZER,
// r50k_base models
"davinci": DAVINCI_TOKENIZER,
"curie": CURIE_TOKENIZER,
"babbage": BABBAGE_TOKENIZER,
"ada": ADA_TOKENIZER,
};
/**
* @typedef {Object} EncodeOptions
* @property {Set<string>|'all'} [allowedSpecial] - A list of special tokens that are allowed in the input.
* If set to 'all', all special tokens are allowed except those in disallowedSpecial.
* @default undefined
* @property {Set<string>|'all'} [disallowedSpecial] - A list of special tokens that are disallowed in the input.
* If set to 'all', all special tokens are disallowed except those in allowedSpecial.
* @default 'all'
*/
/**
* @typedef {Object} ChatMessage
* @property {'system'|'user'|'assistant'} [role] - The role of the message sender.
* @property {string} [name] - The name of the message sender.
* @property {string} content - The content of the message.
*/
/**
* @func EncodeFn
* @param {string} lineToEncode - The string to encode.
* @param {EncodeOptions} [encodeOptions] - Optional encoding options.
* @returns {number[]} An array of numbers representing the encoded result.
*/
/**
* @func DecodeFn
* @param {Iterable<number>} inputTokensToDecode - An iterable collection of numbers to decode.
* @returns {string} The decoded string.
*/
/**
* A function that counts tokens.
*
* @func CountTokensFn
* @param {string | Iterable<ChatMessage>} input - The input string or an iterable of ChatMessage objects.
* @param {EncodeOptions} [encodeOptions] - Optional encoding options to customize the token counting process.
* @returns {number} The total number of tokens counted.
*/
/**
* @typedef {Object} TokenizerModule
* @property {CountTokensFn} countTokens - Function to count tokens in input
* @property {DecodeFn} decode - Function to convert token IDs back to text
* @property {EncodeFn} encode - Function to convert text to token IDs
*/

View file

@ -1,48 +1,11 @@
/**
* @author grmartin [grmartin]
* @author grmartin [grmartin@engineer.com]
* @copyright Crown Copyright 2016
* @license Apache-2.0
*/
import Operation from "../Operation.mjs";
// This mapping returns a Promise that resolves to the correct countTokens function for the model.
const MODEL_TO_COUNT_TOKENS = {
// cl100k_base models
"gpt-4": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-4-32k": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-4-turbo": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-4o": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-4-0125-preview": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-4-1106-preview": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-3.5-turbo": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-3.5-turbo-16k": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-3.5-turbo-instruct": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-3.5-turbo-0125": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"gpt-3.5-turbo-1106": () => import("gpt-tokenizer/model/gpt-3.5-turbo").then(m => m.countTokens),
"text-embedding-ada-002": () => import("gpt-tokenizer/model/text-embedding-ada-002").then(m => m.countTokens),
"text-embedding-3-large": () => import("gpt-tokenizer/model/text-embedding-3-large").then(m => m.countTokens),
"text-embedding-3-small": () => import("gpt-tokenizer/model/text-embedding-3-small").then(m => m.countTokens),
// p50k_base models
"code-davinci-002": () => import("gpt-tokenizer/model/code-davinci-002").then(m => m.countTokens),
"code-davinci-001": () => import("gpt-tokenizer/model/code-davinci-002").then(m => m.countTokens),
"code-cushman-002": () => import("gpt-tokenizer/model/code-cushman-002").then(m => m.countTokens),
"code-cushman-001": () => import("gpt-tokenizer/model/code-cushman-002").then(m => m.countTokens),
"text-davinci-002": () => import("gpt-tokenizer/model/text-davinci-002").then(m => m.countTokens),
"text-davinci-003": () => import("gpt-tokenizer/model/text-davinci-003").then(m => m.countTokens),
// p50k_edit models
"text-davinci-edit-001": () => import("gpt-tokenizer/model/text-davinci-edit-001").then(m => m.countTokens),
"code-davinci-edit-001": () => import("gpt-tokenizer/model/code-davinci-edit-001").then(m => m.countTokens),
// r50k_base models
"davinci": () => import("gpt-tokenizer/model/davinci").then(m => m.countTokens),
"curie": () => import("gpt-tokenizer/model/curie").then(m => m.countTokens),
"babbage": () => import("gpt-tokenizer/model/babbage").then(m => m.countTokens),
"ada": () => import("gpt-tokenizer/model/ada").then(m => m.countTokens),
};
import {defaultValue, MODEL_TO_MODULES} from "../lib/GPTTokenizer.mjs";
/**
* Count AI Tokens operation
@ -65,7 +28,7 @@ class CountAITokens extends Operation {
{
name: "Model",
type: "option",
value: Object.keys(MODEL_TO_COUNT_TOKENS),
value: Object.keys(MODEL_TO_MODULES),
}
];
}
@ -84,11 +47,11 @@ class CountAITokens extends Operation {
// return tokenCount.toString();
const [model] = args;
let countTokensFn;
if (MODEL_TO_COUNT_TOKENS[model]) {
countTokensFn = await MODEL_TO_COUNT_TOKENS[model]();
if (MODEL_TO_MODULES[model]) {
countTokensFn = (await MODEL_TO_MODULES[model]()).countTokens;
} else {
// fallback to default (gpt-3.5-turbo encoding)
countTokensFn = (await import("gpt-tokenizer/model/gpt-3.5-turbo")).countTokens;
countTokensFn = (await MODEL_TO_MODULES[defaultValue]()).countTokens;
}
const tokenCount = countTokensFn(input);
return tokenCount.toString();